首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
针对冷却模块悬置系统结构仿真分析方面,主要考察其振动与疲劳问题,一方面考察汽车在路面行驶时,冷却模块的随机振动激励所产生的疲劳破坏问题;另一方面主要考虑冷却模块的振动特性,首先冷却模块悬置系统的刚体模态频率需要避开发动机二阶点火频率,其次冷却模块的弹性模态频率需要大于风扇运转所产生的频率。本文以冷却模块的振动疲劳破坏的问题为分析目标,对冷却模块的振动特性进行研究,并与实际断裂位置进行对比,分析结果表明仿真分析方法可靠。同时,对冷凝器支架进行相应的优化,可提高冷却模块的随机振动寿命,为冷却模块的优化改进提供依据,并对后续的疲劳寿命分析具有一定的指导作用。  相似文献   

2.
本文运用FEMFAT软件,对白车身疲劳寿命进行了分析,阐述了从实际路面载荷谱的采集、信号处理、单位应力求解得到最终的疲劳寿命分析,并对比样车疲劳耐久路试结果,仿真分析与试验吻合度高,从而验证了仿真分析的可行性,并形成一套可行性技术流程,为后续整车疲劳寿命分析提供了技术积累。  相似文献   

3.
针对电池箱对振动疲劳耐久性能的要求,结合国标中随机振动的加速度功率谱密度函数和材料的S-N曲线,采用Miner线性累积损伤理论和Dirlik疲劳寿命计算方法,对电池箱进行随机振动条件下的疲劳寿命分析。  相似文献   

4.
为解决某汽车空调管路由于共振导致的断裂故障,采集空调管路系统的随机振动激励,将其转换为功率谱密度曲线作为激励进行随机振动试验,得到管路的疲劳寿命,然后进行单位载荷的频率响应分析得到频率应力的传递函数,并进行随机振动疲劳分析,通过试验标定管路系统中的橡胶复合材料,分析其对寿命影响的敏感性。结果表明,管路疲劳寿命低于试验要求,其危险点与断裂位置一致。通过在管路共振方向增加支撑支架进行优化设计,优化后管路疲劳寿命满足要求,整车耐久试验结果表明,管路的应力大幅降低,且未发生断裂。  相似文献   

5.
文章介绍了基于实测试验场道路载荷谱进行动力总成壳体疲劳寿命预测的方法,通过三向加速度传感器实测可靠性试验路面上动力总成壳体悬置点位置载荷谱数据,应用n Code Designlife进行有限元分析软件,考虑对材料的S-N曲线进行修正,进行动力总成壳体模型疲劳寿命仿真预测。根据预测的结果,得出动力总成壳体方案满足疲劳寿命仿真要求的结论。并且得到的疲劳寿命云图,可以发现疲劳寿命薄弱位置,为结构设计和优化提供了一定的参考依据。该方案通过了整车可靠性试验,验证了有限元分析的正确性。  相似文献   

6.
为保证电动汽车电机控制器在行驶过程中的安全性,对其进行随机振动分析。先利用仿真软件建立电机控制器有限元模型进行模态分析,再进行模态试验,并与仿真结果对比,确保仿真模型的准确性;然后对电机控制器仿真模型进行频响分析及随机振动疲劳寿命分析;最后制作样机进行随机振动试验,验证仿真分析结果的准确性和仿真方法的合理性。  相似文献   

7.
为提高车架疲劳寿命计算精度和在设计阶段对车架寿命进行准确预测,须考虑主结构外连点处动载荷对车架疲劳的影响及耦合作用,故本文中提出基于复杂边界的车架疲劳研究方法。通过试验场整车载荷谱采集,得到其全循环损伤值,基于损伤等效原理获得多种路面组合损伤值,与全循环损伤值等效精度为99.5%。构建主结构外连点的有限元车架模型,输出复杂边界的单位应力场;基于载荷谱、台架数据建立含有鞍座、拖车系统的高精度整车动力学模型,获取外连点处动载荷;由疲劳损伤理论计算车架疲劳,疲劳分析结果由试验场路试验证,结果表明基于复杂边界的车架模型仿真精度高,结合局部优化、模型重构使车架寿命满足要求。  相似文献   

8.
由于载货汽车使用工况比较复杂,针对其驾驶室的静态分析方法已不能满足疲劳耐久性能要求,因此将基于真实路面谱的疲劳仿真方法引入驾驶室设计分析过程中。结合某载货汽车驾驶室局部疲劳开裂案例,对路谱采集、信号处理、橡胶衬套特性分析、多体仿真、虚拟载荷迭代和疲劳寿命分析等各关键技术点进行了介绍。通过疲劳仿真与结构优化改进,使该载货汽车驾驶室局部开裂问题得到解决。  相似文献   

9.
建立了伸缩式车架与相应的集装箱有限元模型,并采用惯性释放法对其进行了静态分析。在ADAMS/Car中建立了该半挂车的刚柔耦合多体动力学模型,得到了其在B级路面的载荷谱。结合材料的S-N曲线、结构单位载荷应力结果和车架载荷谱对有无考虑集装箱刚度状态下的伸缩式车架进行了疲劳寿命分析。结果表明,考虑集装箱刚度的车架仿真更符合实际;由于伸缩前、后车架载荷分配的差异,导致拉伸后车架的疲劳寿命远大于缩短时车架疲劳寿命。  相似文献   

10.
为了验证应用随机振动疲劳分析技术进行寿命预测的准确性,文章以汽车电喇叭支架为研究对象,首先进行模态测试校验有限元模型的准确性,然后通过扫频试验获取支架上某点的加速度曲线,再基于Isight软件确定结构阻尼的大小。通过进行电喇叭支架的随机振动疲劳仿真分析及试验,得出预测寿命为338 min,试验寿命在50~320 min之间。考虑到材料工艺、表面质量和存活率对疲劳寿命的影响,最终预测寿命为48 min。结果表明:由于结构受材料工艺和表面质量等因素的影响,疲劳寿命分布存在一定的离散性。但是,综合考虑各种不利因素的影响,可以准确预测疲劳寿命的下限值,有效地指导结构设计。  相似文献   

11.
基于RBF神经网络识别路面谱的新方法   总被引:1,自引:1,他引:1  
路面不平度是车辆行驶中振动的重要激励。为了识别路面不平度的功率谱密度函数(路面谱),提出了一种基于径向基函数(RBF)神经网络识别路面谱的新方法。该方法以7自由度汽车振动模型为基础,以MATLAB软件仿真得到的汽车车身质心垂直加速度谱为神经网络理想输入样本,以GB7031-86建议的路面谱为神经网络理想输出样本,应用RBF神经网络建立汽车车身质心垂直加速度谱和路面谱之间的非线性映射模型。另取一组仿真得到的车身质心垂直加速度谱代入已训练好的网络进行路面谱识别。结果表明:该方法具有较强的抗噪声能力和较理想的识别精度,识别的路面谱与拟合的路面谱吻合一致。  相似文献   

12.
基于结构耐久试验工况,通过六分力设备与底盘杆系所采集的整车道路载荷谱,应用动力学载荷分解方法获得虚拟随机载荷谱,对车身结构进行应力分析和疲劳累积损伤计算。在底盘关键位置布置传感器,同时在车身结构中CAE疲劳分析所对应的5个高应力区粘贴应变片,先后采用3套不同尺寸参数(包括胎高和胎面宽度)的轮胎以相同的耐久工况(同一个试验场,试验路面及对应的速度相同)来进行实车载荷对比测试。针对车身结构载荷幅值、频域进行分析,并基于雨流循环计数对车身和底盘件进行疲劳累积损伤计算与分析。整车实际测试的结果表明,CAE所预测到的损伤(裂纹)位置及其里程数与路试结果相吻合;在同样使用条件下,轮胎内径越大,车身结构和汽车底盘的寿命越低,已经可进行量化对比。  相似文献   

13.
某货车驾驶室疲劳载荷激励输入位置位于驾驶室与悬置连接处,在进行整车强化道路耐久试验时无法安装设备直接采集。为获取较为准确的驾驶室疲劳寿命分析载荷谱,对强化耐久路面下整车加速度响应信号进行虚拟迭代。虚拟迭代时需调用整车多体动力学模型,为提高整车模型精度,基于Craig-Bampton综合模态理论生成柔性体车架,建立刚柔耦合的整车多体动力学模型。将Femfat-lab与ADAMS/Car进行联合仿真计算,以白噪声为初始输入,求解刚柔耦合整车多体动力学模型的非线性传递函数,基于循环迭代原理,进行各种典型强化路况下驾驶室悬置附近加速度响应信号的虚拟迭代。利用时域信号对比法及损伤阈值法作为迭代收敛判据,获得满足精度需求的位移驱动信号。将位移驱动信号导入到ADAMS/Car中,对整车多体动力学模型进行驱动仿真,提取驾驶室疲劳分析所需激励载荷谱,将虚拟迭代求得的载荷谱用于疲劳寿命分析所得结果与驾驶室疲劳强化台架试验结果进行对比。研究结果表明:出现疲劳破坏的部位相同度达75%,疲劳寿命误差在20%左右,表明虚拟迭代过程中基于柔性体车架建立的刚柔耦合多体动力学模型的仿真计算,可获得较高精度的迭代结果;以位移谱驱动整车多体动力学模型进行仿真能够有效避免六分力直接驱动时模型翻转等不稳定现象,并且整车模型仿真加速度响应结果与实测相应位置加速度响应吻合度较高;相比于传统的疲劳分析载荷获取方法,虚拟迭代技术可以在较低试验成本的情况下获取较高精度的载荷谱,并能够提取由于连接位置导致的无法直接进行载荷测量部位的疲劳分析载荷。  相似文献   

14.
根据国标GB/T7031—2005机械振动道路路面谱测量数据报告,在MatLab中编写了随机路面激励谱仿真程序;利用拉格朗日方程建立了1/2车辆动力学模型,并用Simulink对其进行了仿真;以不同等级路面和不同车速下的随机路面激励谱作为输入,分析了车辆在不同等级路面、不同车速下的车身加速度均方根值和后轮的动载荷均方根值。这对满足汽车行驶舒适性和行驶安全性的情况下优化悬架参数具有重要意义。  相似文献   

15.
根据新研发车和现有车型具有相同底盘平台的特点,提出一种利用现车道路载荷,快速进行新车车身疲劳分析和评估的方法。建立新车多体模型,放大现车道路载荷并结合轮胎接地位移为输入。根据车轮力传感器(WFT)载荷测量特点,正确地对模型加载激励,仿真得到车身载荷谱。选用合理疲劳分析方法预测车身寿命,以现车车身的疲劳分析损伤为目标,对不合格局部进行合理优化,最终新车车身达到设计耐久目标。  相似文献   

16.
基于参数自调整模糊控制方法对半主动空气悬架系统进行了仿真分析和试验验证.以某空气悬架大客车1/4车辆模型为仿真对象,设计了参数自调整的模糊控制器,并以随机路面为输入、悬架动行程为约束条件、簧载质量振动加速度和车轮动载荷为评价指标,对模型进行了计算机仿真,同时依据仿真模型设计了空气悬架试验台。仿真和试验结果表明,当汽车行驶工况变化时,引入参数自调整模糊控制方法可以有效降低簧载质量振动加速度和车轮动载荷。  相似文献   

17.
基于随机振动理论,推导了车身结构随机振动响应谱的计算公式;采用Goodman曲线进行交变载荷的等损伤转换,建立了应力幅和平均应力之间的关系式;以材料的疲劳极限作为疲劳抗力指标,将残余应力等效为平均应力,以研究成形因素对疲劳性能的影响;以某汽车尾端横梁为例,采用基于有限元分析结果的疲劳分析法,考虑冲压成形因素的影响,进行了车身结构的动态应力计算、疲劳寿命预测和改进设计.结果表明,所预测的疲劳性能与整车道路试验结果吻合.  相似文献   

18.
以大客车1/2车辆模型为仿真对象,应用Matlab软件建立整车平顺性模型。采用有理函数功率谱参数,建立路面对客车激励的时域模型,并用分段线性插值函数与最小二乘法拟合空气弹簧的刚度曲线,对大客车空气弹簧悬架进行计算机仿真软件的编制,在Simulink中进行仿真运算,并将仿真结果与试验结果进行比较。结果表明,所建立的仿真模型可以对空气悬架大客车平顺性作出正确的预测。  相似文献   

19.
基于汽车车身垂直加速度的典型道路路面谱识别研究   总被引:1,自引:0,他引:1  
以1/4汽车振动模型为研究对象,推导出以汽车车身垂直振动加速度作为输入信号、路面不平度作为输出信号的数学模型及其模拟图,并利用MATLAB/SIMULINK搭建系统模型求解路面不平度,对路面不平度进行谱估计完成路谱的识别。通过实际测试和数据处理分析,说明该方法理论依据正确可行,可以为虚拟样机仿真路面的生成提供数据支持。  相似文献   

20.
叙述了基于实测道路载荷谱将CAE疲劳寿命预测技术与整车道路模拟试验相结合的方法对某车型车身进行疲劳失效再现和改进设计的过程,改进后的车身分别通过了整车台架试验和试车场道路耐久试验,解决了开发过程中的实际问题。虚拟分析识别出的失效位置与物理试验失效结果一致,可以利用其部分替代物理试验来进行车身的改进设计。实践证明CAE疲劳寿命预测技术与整车道路模拟试验相结合的方法能够有效减少车身开发中的试验数量、缩短开发周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号