首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
哈大高铁纵贯我国季节性冻土广泛分布的东北地区,该地区冬夏季温差大,冻胀问题突出,处理不当易造成路基和轨道变形,从而影响高铁的运营安全。哈大高铁路桥、路涵过渡段采用级配碎石掺水泥进行填筑,为了解级配碎石中细粒含量和水泥掺量对其冻胀特性的影响,对掺水泥级配碎石的冻胀特性进行了试验研究。结果表明:不掺水泥级配碎石冻胀率可达1.00%~1.65%,而5%以上水泥掺量级配碎石硬化后基本消除了细粒土冻胀敏感性,冻胀率0.2%;在50次冻融循环作用下,掺水泥级配碎石有被冻坏可能,表层冻裂但并未成粉状,冻胀率也没有显著增大。  相似文献   

2.
针对寒区高速铁路出现的路基冻胀问题,为改良其渗透性和冻胀特性,从路基的粗颗粒填料入手,加入无机材料进行试验,并以冻胀率不超过0.1%为标准,研究粗颗粒填料级配碎石的改良材料类型、最佳配比等技术参数。结果表明:相对于石灰和粉煤灰,掺入水泥可以大幅度减小级配碎石的渗透系数和冻胀率,从而减少水分向填料内部的渗透以及抑制填料的冻胀;在开放补水的冻胀试验条件下,在分别掺入15%,20%和25%粉土的级配碎石中对应掺入3%,5%和5%的水泥,可将冻胀率控制在0.1%以内,说明在粗颗粒填料中掺入水泥后,适当增加粉土的含量并不会使填料产生过大的冻胀变形,从而解决寒区高速铁路路基的冻胀变形问题。  相似文献   

3.
改良粗颗粒填料在寒区高速铁路路基中的应用研究   总被引:2,自引:2,他引:0  
高速铁路路基填料选用传统意义上平均冻胀率η≤1%且级配良好的非冻胀填料,目前高速铁路路基在寒季产生的实际冻胀量已超过规范规定15 mm的要求。针对寒区高速铁路路基冻胀问题,从填料改良方面开展研究,针对路基产生冻胀的主要位置,选取级配碎石为对象,以水泥、石灰、粉煤灰作为掺和料进行改良。通过室内试验,分析加入无机材料后填料渗透性和冻胀性的变化,对比加入3种掺和料的填料冻胀率,选取一种改良效果最为理想的材料,作为寒区高速铁路路基改良材料。研究结果表明:水泥、石灰以及粉煤灰的加入大幅度减少了水分从路基表面向基床内部的渗透,其中粉煤灰吸水能力较强,因此产生了较大的冻胀量,不适宜作为改良材料;水泥改良填料冻结时水分迁移量减少,冻胀量最小,说明相对石灰和粉煤灰,水泥最适合加入到级配碎石中,减小路基冻胀量。  相似文献   

4.
在我国寒冷地区,高速铁路路基的防冻胀结构设计,是需要重点考虑的问题。在高速铁路路基的设计施工中,采取了控制细颗粒含量、设置隔水层、加强排水等一系列防冻胀措施,但铁路路基冻胀病害仍时有发生。为了掌握高速铁路路基基床表层冻胀病害特点及原因,对低细颗粒含量的级配碎石填料进行了试验研究。结果表明:随着细颗粒含量的增加,级配碎石的冻胀敏感性增加,冻胀量增大;且细颗粒含量越大,外界水分对路基填料土体的冻胀影响越大;土体的渗透系数越大,其抗冻能力越强,当渗透系数大于10~(-3)时,土体的冻胀系数小于1;通过对低细颗粒含量级配碎石冻胀机理的分析,得出粗颗粒骨架接触部位的水及粘粒颗粒是引起低细颗粒含量级配碎石冻胀的主要原因。  相似文献   

5.
客运专线基床表层级配碎石冻胀影响因素的试验研究   总被引:1,自引:0,他引:1  
通过室内冻胀试验,研究含水率、孔隙率和细粒含量对级配碎石冻胀的影响规律,并运用偏相关方法对影响因素与冻胀率之间进行相关性分析。研究结果表明:级配碎石的冻胀率随着含水率和细粒含量的增大而增大,而其冻胀率随着孔隙率的增大而逐渐减小;随着含水率、孔隙率和细粒含量的增大,试样的冻胀率的变化率均呈现减小的趋势;含水率为影响级配碎石冻胀的主导因素,并提出控制级配碎石的含水率<4%的指标,其冻胀量满足要求。含水率、孔隙率和细粒含量对级配碎石的冻胀影响均在0.01(双侧)水平上显著相关,在实际分析时,应综合考虑3种因素对其冻胀的影响。  相似文献   

6.
研究目的:对于路桥过渡段较多的高速铁路地段,控制路桥过渡段的沉降差是保证列车运行平顺性的重要因素,尤其是处于深季节冻土区的高速铁路路桥过渡段,其变形控制更加严格。本文以哈齐高铁某路桥过渡段为试验监测断面,基于现场地温、冻胀变形和沉降变形的试验数据,分析寒区高速铁路路桥过渡段的地温、基床表面的冻胀变形和基底的沉降变形,揭示寒区高速铁路路桥过渡段的地温与变形特征,从而评价路桥过渡段的稳定性状况。研究结论:(1)建设初期,采用掺3%水泥的级配碎石作为桥后回填料较粗粒土易吸热和放热;两者在相应深度处的温差随时间的推移逐渐减小并趋于0℃,最终桥后级配碎石与粗粒土达到新的热力平衡;(2)采用掺3%水泥的级配碎石作为路桥过渡段桥后回填材料,其基床表层与桥台间的最大变形差值为4.6 mm,满足规范要求;(3)级配碎石作为桥后回填材料,其基床表层的变形随时空的变化过程分为四个阶段:冻胀快速发展期、冻胀相对稳定期、冻胀抬升期和融化回落期;(4)级配碎石作为桥后回填材料,其冻结深度与基床表层的冻胀变形呈非线性关系,但路堤的最大冻结深度影响其基床表层的最大累积冻胀值;(5)路基阳坡的沉降量较阴坡大,离阴面坡脚越近,基底的沉降量和变形幅度越小;路基施工完成至铺轨前,基底沉降随时间的推移缓慢增大,但目前基底各测点沉降量均满足规范要求;(6)该研究成果可为今后季冻区类似工程设计、施工和维护提供参考。  相似文献   

7.
寒区客运专线铁路路基防冻胀填料压实试验研究   总被引:1,自引:1,他引:0  
在寒区修建无砟轨道,路基防冻胀问题是必须解决的关键技术之一,而控制路基填料细颗粒的含量是路基防冻胀最主要的工程措施。通过分别对筛除4、5、6 mm以下粒径的防冻胀A、B组填料及掺有石粉、砂的基床表层级配碎石进行了不同组份的配比试验、不同控制孔径筛分生产试验及碾压试验,分析了填料级配与压实性之间关系,找出了满足填料防冻胀及压实性的填料级配,为工程实施提供了依据。  相似文献   

8.
基于填料抗冻理念,以合理的填料持水率、冻胀性及压实特性为综合目标,探讨了适用于高速铁路路基防冻胀的渗透性级配碎石的级配组成。通过不同级配条件下室内饱水持水试验、渗透试验和冻胀试验,研究了不同级配填料的持水能力、渗透性能和冻胀特性,明确了渗透性级配碎石的级配范围。依托中国东北地区一高速铁路开展了现场填料制备、压实及试验段防冻胀效果监测试验研究,完善了渗透性级配碎石的制备和压实工艺。研究结果表明,渗透性级配碎石基床应用于高寒地区高速铁路路基防冻胀是可行的。  相似文献   

9.
为抑制严寒地区高速铁路路基冻胀变形量,满足铺设无砟轨道的要求,充分吸取换填、防水、保温等冻胀防治方法的最新研究成果,通过再创新,形成一种包含有防冻层、隔排水、局部保温的综合防冻胀技术,并应用于哈大高速铁路实际工程中。通过现场试验研究,得出采用该项技术路基冻胀量普遍小于4mm,防冻胀效果满足设计要求的结论。同时根据哈大线后期路基冻胀进一步深化研究成果,对哈大高速铁路路基冻胀规律进行总结,对路基防冻胀设计中如不冻胀土的判定标准、设计冻深的采用与修正、级配碎石掺水泥用于防治冻胀的优劣等几个问题进行进一步探讨,从实际应用方面提出建议和意见。  相似文献   

10.
季节冻土区铁路路基变形监测及冻害原因分析   总被引:4,自引:4,他引:0  
根据京包铁路、包兰铁路路基在1月-6月期间的变形监测和路基土的级配试验,分析了季节冻土区铁路路基的冻胀变形情况及产生原因.分析结果表明,在内蒙古境内的季节冻土区铁路路基冻胀呈现整体性变形特点,但不同里程处的路基冻胀差异较大;在监测区段内,京包线路基最大冻胀率为5.2%,最小冻胀率为2.4%;包兰线路基最大冻胀率为4.2%,最小冻胀率为1.1%;路基的冻胀变形极不规则,严重破坏了路基的整体平顺度.京包线、包兰线路基填土的级配不良是引起路基冻害的首要原因;路基多年的冻害效果累积和基床土质不均导致冻胀变形不均匀发生.  相似文献   

11.
无砟轨道铁路路基变形模量Ev2控制指标的试验研究   总被引:1,自引:0,他引:1  
根据京津城际轨道交通工程路基测试数据,对不同压实条件下碎石类土及级配碎石路基Ev2控制指标进行试验研究.抽取422组测试数据进行统计,分析Ev2及Ev2/Ev1的分布规律及其对路基压实质量的反映程度.对其中93组级配碎石路基Ev2测试数据进行K30分析比对.结果表明,路基压实质量与Ev2/Ev1值的相关性很大,对于不掺水泥的碎石类土填料,Ev2/Ev1较大时,K30,Evd容易出现不合格;对于掺3%~5%水泥的级配碎石填料,Ev2与Ev2/Ev1值离散性偏大,但Ev2/Ev1值较大时,K30测试值偏小.从Ev2多次加载曲线及现场实测不合格点测试结果也可以发现,采用Ev2及Ev2/Ev1双重指标对路基压实质量控制更为有效.  相似文献   

12.
针对兰新高速铁路路基冻害防治,通过不同细颗粒含量、不同含水率下的4个取土场路基填料在封闭系统和开放系统下的冻胀试验,进行粗颗粒土填料的冻胀性研究。结果表明:含有细颗粒的粗颗粒填料在冻结时可能会发生冻胀,其冻胀率取决于填料中的细颗粒含量、冻结前的含水率及冻结过程中水分补给情况;封闭系统条件下,冻胀率随含水率及细颗粒含量的增加而增大,细颗粒含量在3.76%~21.46%,处于饱和状态时填料的冻胀率可达1.1%~2.2%,冬季发生冻结时所产生的冻胀量会超过高速铁路无砟轨道高低偏差管理值,造成路基冻害;开放系统条件下的冻胀率远大于封闭系统下,压实系数为0.93时冻胀率可达3.45%~4.7%。可见,控制填料中的细颗粒含量、做好防排水设施是高铁路基防冻害首要选择的措施。  相似文献   

13.
以高速铁路基床表层级配碎石为研究对象,基于X-CT扫描成像技术进行级配碎石冻结状态细观研究。利用X-CT扫描技术结合图像处理技术重构冻结状态下的三维级配碎石试样模型。通过断层扫描图像的灰度识别技术,辨识出级配碎石中不同组分的灰度范围,进而获取级配碎石颗粒、冰晶和孔隙的分布特征。不同饱水度和细颗粒含量级配碎石冻结状态的X-CT扫描分析结果表明:冰晶主要聚集在试样的孔隙和粗、细颗粒交界处;冰晶含量随饱水度增加而增加,孔隙率随细颗粒含量的增加而减少;级配碎石冻胀有别于传统细粒土冻胀,主要在细颗粒聚集区发生水分微迁移,推动粗颗粒旋转、错动,使其偏离原来的位置,引发冻胀。  相似文献   

14.
高速铁路路基基床翻浆病害的原因之一是基床表层级配碎石中细颗粒含量超标。为此提出了基床表层级配碎石细颗粒冲洗技术,并从理论上论证细颗粒冲洗技术的可行性。通过试验验证了细颗粒冲洗技术能显著降低基床表层级配碎石中粒径0.075 mm以下细颗粒的含量,且冲洗后试样的冻胀率明显变小。此外,通过试验进一步完善了细颗粒冲洗施工工艺,提高了我国运营高速铁路路基病害整治技术。  相似文献   

15.
着眼于季节性冻土区高铁路基防冻胀填料改良及路基保温措施,提出纤维泡沫混凝土作为基床表层填料或保温强化层材料的防冻胀路基结构形式。对纤维泡沫混凝土进行物理力学特性及抗冻融耐久性试验,在此基础上采用有限元仿真分析级配碎石基床、纤维泡沫混凝土基床、保温强化层基床3种路基结构的层间剪切应力、竖向应力、竖向位移等力学参数。结果表明:纤维泡沫混凝土具有良好的保温特性及冻融耐久性,其作为基床表层填料与级配碎石相比,路基结构力学参数均得到改善;其作为保温强化层材料可有效降低级配碎石基床表层剪切应力的最大值,提高路基结构整体稳定性。在一定程度上证明了纤维泡沫混凝土作为季节性冻土区高铁路基防冻胀材料的可行性。  相似文献   

16.
为了揭示土中掺入水泥对冻胀特性的影响,本文对南京地区典型黏土和砂土掺入不同比例的水泥进行冻胀试验、变水头渗透试验和直接剪切试验。试验结果表明:水泥的掺入改变了土的力学性能,两种土质水泥土渗透系数均随水泥掺量的增加明显减小,内摩擦角和黏聚力均随水泥掺量增大而增大;冻胀率均随渗透系数减小而减小,随水泥土黏聚力和内摩擦角增大而减小;水泥的掺入可堵塞水分迁移的通道,从内部减弱水分迁移的动力,而且掺入水泥后改变了土体级配,增大土体强度,使土颗粒间结合力和抵抗土颗粒骨架变形能力增强,从而使最终冻胀率减小。  相似文献   

17.
为了揭示土中掺入水泥对冻胀特性的影响,本文对南京地区典型黏土和砂土掺入不同比例的水泥进行冻胀试验、变水头渗透试验和直接剪切试验.试验结果表明:水泥的掺入改变了土的力学性能,两种土质水泥土渗透系数均随水泥掺量的增加明显减小,内摩擦角和黏聚力均随水泥掺量增大而增大;冻胀率均随渗透系数减小而减小,随水泥土黏聚力和内摩擦角增大而减小;水泥的掺入可堵塞水分迁移的通道,从内部减弱水分迁移的动力,而且掺入水泥后改变了土体级配,增大土体强度,使土颗粒间结合力和抵抗土颗粒骨架变形能力增强,从而使最终冻胀率减小.  相似文献   

18.
研究目的:CRTSⅡ型板式无砟轨道桥上底座板纵向连续后,其上产生的温度力和制动力等将影响到路基上的轨道结构,在桥台后一定长度路基上设置摩擦板和端刺,可以将连续底座板上产生的温度力和制动力等传至路基内,不再影响路基上的轨道结构。通过本研究,提出一个既能确保路基上轨道结构安全稳定、又能节省工程投资的摩擦板和端刺方案。研究结论:采用倒T型端刺,小端刺下基床表层和基床底层深度范围路基填筑级配碎石掺水泥、大端刺两端各5 m宽按1∶2刷坡范围路基填筑级配碎石掺水泥方案,加荷载后,端刺最大纵向水平位移小于3 mm,能够确保路基上轨道结构安全稳定;且工程造价较原京津城际铁路摩擦板端刺方案经济。  相似文献   

19.
研究目的:通过阐述路基土冻胀机理及影响因素,结合本段的填料情况,浅析路基基床底层用60 cm细粒含量除小于5%的碎石类土满足路基填筑冻胀要求外,细粒含量小于15%的是否也可以有效防止冻胀。研究结论:通过对路基冻胀的主要机理、影响因素以及路基A、B组填料冻胀性的试验,浅析了路基特定填料的冻胀特性,得出在路基基床底层用60 cm厚细粒含量小于15%的碎石类土填筑路基可有效防止冻胀的结论,但鉴于土的冻胀性影响因素相当复杂,各种研究成果具有局限性,填料冻胀性还需进一步修正和补充,从而使路基防冻胀填料和结构设计更加合理。  相似文献   

20.
高速铁路路基水泥级配碎石填筑质量直接影响高速铁路运营的平顺性和安全性。文章系统总结了高速铁路路基水泥级配碎石填筑质量控制要点,提出水泥级配碎石压实质量应"内在密实、板结良好"的定性评价标准,以期对路基填筑质量控制和评价具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号