首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了抑制轮对空转并最大限度利用轮轨黏着能力,需要开发基于虚拟样机和现代控制理论的机车黏着控制技术.建立了大功率机车牵引列车及电气牵引传动系统的机电一体化动力学模型,考虑到了大蠕滑率时轮轨黏着负斜率特性、电机磁饱和及转矩机械特性,对机车驱动过程进行仿真研究.提出通过检测同一转向架内不同轴之间的最大角速度差和角加速度差,实时计算轮轨黏着度,并采用模糊控制策略的黏着控制方法.仿真结果表明:在不同轨面及运行工况下,黏着控制使得轮轨有效黏着系数保持在黏着峰值,提高了机车的牵引性能;轮对的蛇行运动使得黏着控制中产生波动现象,波动频率与蛇行运动频率一致;针对不同结构参数机车和运行工况,黏着控制参数需要优化以达到最大的轮轨黏着利用率.  相似文献   

2.
在列车的行驶过程中,轮轨间的黏着控制尤其重要,最大化利用黏着力可提高列车的牵引/制动性能。文中提出的列车传动最优黏着控制策略通过全维状态观测器准确地估计出当前利用的黏着系数;利用可变遗忘因子的递归最小二乘法有效地计算出黏着-蠕滑特性曲线斜率;采用最速梯度法迅速搜索最佳蠕滑速度给定值。同时为了实现最优黏着控制,设计了蠕滑速度控制环来获得牵引电机转矩指令补偿量。最后通过仿真,证明了该控制策略的正确性和有效性。  相似文献   

3.
机车处于轮轨黏着极限状态运行时,轮轨黏着饱和及负斜率特性使得驱动轮对出现复杂的动力学现象。为了研究机车驱动装置受到轮轨动态激励的响应,首先研究黏着极限状态轮轨的黏滑特点及其引起轮对的动力学问题,然后建立机车的多体动力学模型,仿真驱动装置各结构部件的振动及其振动主频率,得出避免机车驱动装置结构发生共振的参数匹配原则。结果表明:机车处于黏着极限状态运行时,轮轨间黏滑状态会产生驱动轮对的纵向振动和驱动装置的自激振动等典型动态特征;驱动装置自激振动会激发基于结构固有频率的振动,且各结构振动会相互影响。因此,需合理选取牵引电机吊挂关节的刚度,避免基于电机点头振动固有频率及各结构部件固有频率的振动。特别是,若牵引电机转子旋转、轮对扭转振动和轮对纵向振动的固有频率一致,将引起驱动装置结构产生共振。  相似文献   

4.
表面接触状态对轮轨摩擦系数和黏着特性影响显著。基于车辆—轨道耦合动力学理论,建立了考虑轮轨防空转控制的重载列车—轨道耦合动力学模型。利用该数值模型分析了接触状态对轮轨动态相互作用的影响,系统地对比研究了不同防空转控制策略对轮轨黏着性能的影响。分析结果表明:轨面接触状态和防空转控制阈值对轮轨法向相互作用及黏着特性影响显著;相比于定阈值的PID轮轨防空转控制,当采用最优转矩控制策略时牵引效率更高。  相似文献   

5.
简单分析了轮轨间的粘着特性,对机车上IGBT变流器供电的异步牵引电机的转矩脉动进行了理论和仿真计算,根据计算的结果讨论了牵引电机转矩脉动对机车粘着利用的影响,并对机车运行时最佳蠕滑速度点的选取提出了建议.  相似文献   

6.
潮湿、雨雪等轨面条件会导致地铁列车的黏着利用率低,从而降低列车的牵引和制动性能,进一步带来安全问题。为了使轮轨黏着力得到充分利用,建立了地铁列车的单轴牵引模型,设计全维状态观测器对黏着系数进行估计,并通过滑模变结构设计控制器来对电机转矩进行控制调整,基于MATLAB/Simulink进行模型仿真和结果分析。仿真结果表明,这种方法可以实时搜索出不同轨面条件下的最优蠕滑速度,黏着系数保持在最大值附近,提高了黏着利用率。  相似文献   

7.
重载运输是除高速铁路以外,铁路现代化的又一标志,重载机车牵引与制动性能的发挥效果依赖于轮轨黏着利用状况。本文首先从黏着-蠕滑现象和黏着特性两方面,简要介绍黏着基本理论;然后着重围绕制约黏着利用性能提升的关键问题,从黏着系统建模、系数辨识、故障检测、黏着控制四个方面,系统综述重载机车轮轨黏着利用近年来的研究成果,并依据机车运行工况的特点,分别评述现有成果在实际应用中的优势与不足之处。最后从复杂多变条件下黏着系统建模、黏着微小故障在线检测和多牵引动力协同分配等角度,指出轮轨黏着利用研究的未来发展趋势。  相似文献   

8.
牵引电机负载模拟是轨道车辆牵引传动系统仿真中不可缺少的重要环节,传统的电机负载模型由于没有考虑轮轨关系而无法应用于地铁黏着控制算法的研究.在分析了地铁车辆力传递关系的基础上,提出用考虑轮轨作用的力传递模型来替代传统的阻力负载模型,可以模拟地铁车辆在运行中出现的空转现象,验证黏着控制策略的控制效果,整定控制参数.结合北京地铁13号线实车参数和牵引特性,验证该负载模型应用于黏着控制研究的有效性和可用性.  相似文献   

9.
机车车辆轮轨黏着问题与机车运行存在密切关系。在其他条件不变情况下,牵引轴重必将加大滑动区面积,但随着蠕滑率的不断加大,黏着系数随着轴重增加而减少。黏着控制实质是蠕滑率控制,目的是有效识别和抑制机车空转和滑行,使机车牵引力或制动力在接近轮周牵引力峰值点工作,充分发挥轮轨可用黏着潜力,提高黏着利用率,并根据国内机车黏着利用方面存在的不足提出改进建议。  相似文献   

10.
为改善轮轨黏着关系、保障行车安全以及提高黏着利用率,需对机车进行黏着控制。针对机车运行过程中轨面黏着系数难以获取的问题,设计了SVD-UKF观测器,有效克服了外界干扰对观测精度的影响;并结合递推最小二乘法,实现了对当前轨面最优参考蠕滑速度的实时搜索;为提升抗干扰能力和鲁棒性,提出了一种基于指数趋近律的滑模鲁棒控制算法。仿真结果表明,所提出的控制策略具有良好的控制效果,能够实现机车黏着的较高利用。  相似文献   

11.
黏着控制决定了交流电力机车能否有效利用黏着,是牵引传动控制系统的重要组成部分。本文解释了机车产生空转和假空转的原因,分析了机车黏着控制的原则,对机车再黏着控制方法的控制条件和控制效果进行了分析,最后给出了我国未来优化机车黏着利用的建议。  相似文献   

12.
基于加速度微分粘着控制方法的仿真研究   总被引:2,自引:2,他引:0  
为有效提高机车牵引性能,减少机车空转/滑行现象,提高旅客乘坐舒适度,首先分析了机车轮轨间粘着特性,通过对机车运动方程和电机运动方程的推导,提出了一种新的基于加速度微分的粘着控制方法,运用MATLAB/Simulink仿真验证了其有效性。  相似文献   

13.
从理论上分析了直接转矩控制原理,建立了异步牵引电机在全速域范围内运行的直接转矩控制方案:在低速区采用间接直接转矩控制,并基于间接直接转矩控制提出了一种新的启动限流方法;在中速区基于十八边形磁链采用直接转矩控制;在高速区基于六边形磁链,通过磁链动态调节达到转矩控制的目的.通过仿真对该方案进行了验证,结果表明:提出的异步牵引电机全速域直接转矩控制策略是可行的,系统具有良好的动静态性能,可用于异步牵引电机控制器的研究与开发.  相似文献   

14.
针对地铁车辆传统黏着控制策略只基于速度识别车辆空转/滑行状态时,在传感器信号受到干扰或无效时导致错判、漏判空转/滑行等影响后续黏着控制的局限性,提出一种新的识别车辆空转/滑行状态的黏着控制策略。该策略结合考虑基于速度、三相电流以及转矩指令,进行车辆空转/滑行程度的识别,根据车辆空转/滑行程度限制转矩输出以恢复黏着,并实时监测车辆空转/滑行状态控制电机转矩输出保证车辆的有效牵引性能。本方法已成功应用于常州地铁牵引辅助控制系统,试验验证结果表明,该黏着控制策略能够有效地实现湿滑轨面条件下的车辆黏着控制。  相似文献   

15.
重载列车在运行时,黏着条件容易受到不良的天气状况或轨面状态影响,会导致列车无法有效发挥牵引力。为了解决重载列车在运行过程中因黏着条件恶化导致无法有效发挥牵引力的问题,提出一种考虑系统不确定性估计的离散积分滑模控制方法,该方法通过对最优蠕滑速度的跟踪控制,实现重载列车的最优黏着控制。由于黏着系数在实际情况中难以测量,所以针对此情况设计串联滑模观测器对黏着系数进行观测估计。采用带遗忘因子的最小二乘法估计出黏着特性曲线斜率,并根据梯度下降算法得到最优蠕滑速度。以最优蠕滑速度和实际蠕滑速度作为控制系统输入,以牵引电机转矩作为系统输出,利用一步延迟估计方法估计系统的不确定性,据此设计离散积分滑模控制器控制电机转矩使蠕滑速度始终稳定在最佳蠕滑速度处。仿真实验结果表明:设计的考虑系统不确定性估计的离散积分滑模控制方法实现了对最优蠕滑速度的跟踪控制,并且与离散积分滑模控制方法相比,系统跟踪误差更小且具有更高的控制精度。说明采用的方法不仅能够补偿系统的不确定性和抑制抖振现象,而且还能实现对最优蠕滑速度的高精度跟踪控制,达到使重载列车牵引性能最优的目的。  相似文献   

16.
基于ALE (Arbitrary Lagrangian Eulerian)有限元建立稳态轮轨滚动接触的三维有限元模型.利用该模型计算和分析重载轮轨滚动接触的黏着特性,并研究不同速度等级对重载轮轨黏着蠕滑特性的影响.用该模型对重载大功率机车车轮在轨道上从制动、惰行到牵引过程进行计算,得到了这一过程中轮轨接触状态的变化规律和黏着特性曲线.在重载大功率机车从制动、惰行到牵引的过程中,轮轨纵向摩擦力由反方向饱和状态逐渐转变成牵引方向饱和状态,而轮轨横向摩擦力始终呈反对称性分布,其最大值位置先是逐渐靠近接触斑中心,然后又逐渐远离之;摩擦力矢量呈旋转分布,其方向从与运动方向相反逐渐变为与运动方向相同,其旋转中心从轮缘附近逐渐进入接触斑,随后又逐渐向轮缘一侧移动;当轮轨纵向蠕滑率较小(≤0.003)时,黏着力随纵向蠕滑率的增加而近似线性增加,但运行速度对此影响不大;进入大蠕滑率(>0.003)区域后,黏着力随蠕滑率的增加而减小,并且速度越高,黏着力降低得越快.  相似文献   

17.
轮轨黏着影响列车牵引和制动,对铁路运营效率和行车安全至关重要。论述国内外高速轮轨黏着的研究成果,包括仿真研究和试验研究进展情况。在仿真研究方面,介绍国内外轮轨黏着的理论模型发展和数值方法;在试验研究方面,介绍国内外的试验方法和试验结果。通过对轮轨黏着机理进行研究,揭示影响轮轨黏着的因素及其影响规律。分析现场存在的轮轨黏着方面的问题以及国内外轮轨黏着的控制与利用情况,包括最新的轮轨增黏措施和防滑防空转技术,并对高速轮轨黏着机理未来的研究方向进行展望。  相似文献   

18.
针对高速列车的主动黏着防滑控制问题,提出基于障碍Lyapunov函数的蠕滑速度动态面跟踪控制算法,可以实现对蠕滑速度的上界约束,同时保障黏着控制系统的稳定性。首先建立考虑牵引与制动转矩产生过程的高速列车动力学模型,并将黏着控制问题描述为含输出约束的非线性系统的跟踪控制问题;然后引入障碍Lyapunov函数处理输出约束问题,设计了自适应动态面控制律,未知参数由自适应律估计得到,未知时变的黏着力和运行阻力由两个力观测器来估算;最后通过Lyapunov方法证明了蠕滑速度跟踪误差半全局一致最终有界,蠕滑速度始终保持在稳定区域内。仿真结果证明了该方法的有效性。  相似文献   

19.
为了进一步考虑粗糙表面对轮轨蠕滑的影响,从微凸体的微米尺度跨越到米的尺度,着力于摩擦的物理学本质,建立干摩擦工况下的轮轨蠕滑力的二维动态计算模型。通过微凸体接触与断开来模拟轮轨接触的滚滑运动,讨论不同速度、蠕滑率、轮轨表面粗糙度参数等因素对轮轨黏着系数的影响,对每个因素造成的轮轨牵引系数的变化进行数值分析。在中低速情况下,通过对线路测量数据和实验室JD对滚机数据与模型计算结果的对比,验证了模型的有效性。结果表明随着速度的增大,黏着系数随之下降;适当增加轮轨表面粗糙度能提高轮轨间的黏着系数;同时以非人为划分的方式重现接触斑内牵引系数变化的过程,从黏着区到滑动区的过渡过程。  相似文献   

20.
铁道轮轨黏着系数   总被引:2,自引:2,他引:0  
黄问盈 《铁道机车车辆》2010,30(5):17-25,33
铁道轮轨黏着限制对铁道列车安全运行至关重要,尤其现代高速列车速度已达350—360 km/h,并有向400 km/h甚或以上推进的趋势,所以高速轮轨黏着条件能否支持高速牵引力与制动力就是一个现实课题。时至今日,尚无法用理论方法推算轮轨黏着系数公式格式和数值范围,只能用纯经验方法处理。本文推荐常规列车中不同型式机车(牵引)计算黏着系数的实用公式,并提供3种核算利用黏着系数的方法,基于核算、分析与讨论若干类别的高速列车利用的黏着系数范围与少数既有的高速黏着系数公式之间的位置与关系,最终推荐中国湿轨黏着系数的实用公式(μ_j=0.04+13.7/120+v),作为高速列车(牵引与制动)统一的计算黏着系数公式以及常规列车的(制动)计算黏着系数公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号