首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
动车组列车制动系统是列车自动驾驶系统ATO的关键环节。针对动车组列车制动系统模型存在较大误差导致的列车在制动阶段控制效果较差这一问题,提出将动车组列车制动模型分为静态子系统和动态子系统两部分,根据列车制动系统的性能和要求,设计了CPSO(混沌粒子群算法)优化GPC广义预测控制器。该控制器由CPSO辨识动态子系统纯延时环节和外界干扰造成的GPC模型误差,并计算动车组列车所需的控制量。以CRH2型动车组为仿真对象,从仿真结果看出,CPSO-GPC控制器在遇到未知干扰时能够满足动车组列车对给定速度和位移的高精度跟踪要求。  相似文献   

2.
针对动车组列车制动系统的非线性及其在ATO中的重要性,从控制和动力学角度提出动车组列车制动系统的Hammerstein模型。根据制动指令信号的流向介绍动车组列车制动系统的工作过程;分别考虑系统各环节,用经过曲线拟合得到的静态非线性函数描述动车组列车制动特性表,用延时环节描述制动指令信号传输和制动控制器动作的延时,用两个一阶线性环节分别描述制动力反馈调节过程和动车组列车减速度冲动缓解过程,提出动车组列车制动系统的Hammerstein模型;并介绍了思维进化算法辨识模型参数的方法。最后以CRH2型动车组为仿真对象验证模型和参数辨识方法的有效性。  相似文献   

3.
高速动车组电空制动系统是由气动元件、电子元件和基础制动装置组成的复杂系统。基于现代流体力学的仿真分析软件AMESim建立制动系统中关键气动元件的仿真模型,通过试验数据对仿真模型进行验证和参数修正;将封装的气动元件模型与电子元件模型和基础制动装置进行系统集成,建立单车以及列车级电空制动系统仿真模型。基于列车级电空制动系统仿真模型,对高速动车组电空制动系统参数进行配置和分析,设计高速动车组电空制动系统。在最大常用制动和紧急制动2种工况下对基于仿真模型设计的高速动车组电空制动系统进行验证。结果表明:最大常用制动时减速度仿真值与减速度设计值相符;紧急制动时制动距离试验值为5 670m,仿真计算值为5 795m,相对误差为2.2%,仿真计算值与试验值吻合程度高。  相似文献   

4.
城轨列车制动模型及参数辨识   总被引:2,自引:0,他引:2  
列车制动模型是设计ATO精确停车控制策略的依据.本文通过分析城轨列车制动系统的构成、特性及其和驾驶员的接口,从面向控制的角度提出适合控制器设计的制动模型以及模型参数的辨识方法.现场实验表明:该模型能够较好描述城轨列车制动系统的动态特性,并且基于该模型的自动停车控制系统在实验中也取得了满意的性能.  相似文献   

5.
和谐号动车组是我国高速铁路装备制造技术发展的重要里程碑,其系统内部结构颇为复杂,各组成部分关系紧密、相互作用,形成了复杂的接口关系。以CRH3型高速动车组列车为例,介绍了制动系统与列控系统、牵引系统、TD-HMI(列车—司机人机接口)、门控系统和开关及环路等列车控制子系统之间的接口方式、方法与关系。分析了制动系统如何与列车其他子系统密切配合、协调控制,实现制动系统特定功能的作用过程。  相似文献   

6.
制动系统作为动车组关键技术,是动车组运行的可靠保证。制动系统控制技术作为制动系统的中枢,是实现整车制动力管理与分配的核心。制动系统具有列车级主控功能,能够实现全列车制动力管理、分配和计算。将针对各制动工况对CRH380B动车组制动力的控制实施进行分析,并结合其他典型动车组的制动控制模式进行分析研究。  相似文献   

7.
张静 《中国铁道科学》2015,(2):17+51+59+67+72+86
<正>7 CRH3型动车组网络控制系统列车网络控制系统具有列车级、单元级的控制和监视功能,基于信息共享,可实现对包括整车牵引系统、制动系统、高压系统、辅助供电系统、空调系统、车门系统、旅客信息系统、火灾报警系统、转向架监测系统等在内的几乎所有子系统的综合管理和控制,完成列车的控制、监视、诊断与保护等任务。列车网络控制系统具有故障诊断和故障信息存储功能。诊断系统在动车组的运行、维护和维修期间向列车人员(司机、乘务员)以及检修人员提供有效的操作和检修支持。  相似文献   

8.
介绍了突尼斯内燃液力传动动力分散型动车组电气集成控制设计策略及方法,从列车级角度,重点分析和研究列车驾驶、牵引、制动、门控、重联等主要电气子系统逻辑控制关系,并通过电气原理设计和试验验证,证明其控制逻辑合理、严密、安全、可靠以及可用.  相似文献   

9.
实现高速列车对期望速度与位移的精确跟踪至关重要。考虑输入饱和约束以及由于不确定的运行阻力、未知的黏滞摩擦系数和未测量的运行状态等引起的系统不确定性,提出高速列车的鲁棒自适应动态面控制算法。建立考虑牵引与制动转矩产生动态过程的高速列车动力学模型;引入扩张状态观测器在线估计和补偿系统总的不确定性,应用跟踪微分器代替动态面控制中的一阶滤波器,构造附加系统处理输入约束问题,设计了高速列车的鲁棒自适应动态面控制律;基于李雅普诺夫稳定性理论证明了闭环系统的稳定性以及高速列车速度跟踪误差和位移跟踪误差的半全局一致最终有界性。仿真结果验证了所提算法的有效性。  相似文献   

10.
根据直接转矩控制理论和车辆系统动力学理论,综合圆形磁链控制和六边形磁链控制的优点,考虑了车辆机械传动系统,建立全速度下高速列车机电一体化控制仿真模型。并针对某高速动车组进行仿真,同时考虑列车起动阻力和运行阻力,分析了在牵引加速、匀速运行、制动减速工况下列车电气和机械部分的状态。仿真结果表明:所建立的系统具有良好的动态和静态性能,能够将车辆电气部分和机械部分充分结合到一起,实现对牵引传动系统的优化控制,仿真方法可用于高速列车机电一体化的深入研究。  相似文献   

11.
中低速磁悬浮列车制动过程中具有非线性强、时滞大、时滞特性难处理等特性,传统列车制动控制方法难以实现对磁浮列车制动过程的精准速度控制。为解决中低速磁悬浮列车制动过程的时滞问题,提高制动控制精度,提出一种中低速磁浮列车制动过程的时滞补偿预测控制方法。首先,根据中低速磁悬浮列车实际运行数据,利用带有遗忘因子的递推最小二乘法辨识列车模型参数,建立列车自回归模型。然后,根据得到的受控自回归积分滑动平均模型和Smith预估器构建带时滞补偿的广义预测控制器并分析其控制律更新过程,实现对中低速磁悬浮列车制动过程的纯滞后补偿,降低列车制动过程中时滞特性的影响。最后,基于某磁浮线现场数据,以中低速磁悬浮列车制动过程为被控对象进行实验仿真,并比较时滞补偿广义预测控制方法与传统广义预测控制方法对于中低速磁悬浮列车制动过程速度跟踪控制的效果。仿真结果表明:所设计的时滞补偿广义预测控制器能够以更高的精度实现对中低速磁悬浮列车制动过程的速度跟踪,且与传统广义预测控制方法相比,系统跟踪误差更小并具有更好的控制性能。所提出的时滞补偿广义预测控制算法不仅解决了中低速磁悬浮列车制动过程的时滞问题,而且有效提高了列车制动控制...  相似文献   

12.
根据城际铁路列控系统中离散逻辑跳转和连续时间行为交织的特征,采用Matlab软件中的Simulink和Stateflow结合的方式实现车载控制子系统混成行为的建模与仿真,分析不同速度下列车超过紧急制动触发速度后产生的紧急制动距离以及列车实际运行曲线。结果表明:建立的紧急制动触发模型所产生的制动距离满足动车组厂家给出的要求,并且具有一定的安全余量;该建模方法直观高效,易于理解,模型能够很好的描述系统特性。仿真结果也可为车载控制子系统的设计和实现提供一定的支持。  相似文献   

13.
和谐号动车组制动防滑控制理论和试验   总被引:1,自引:0,他引:1  
防滑控制系统是和谐号动车组列车制动系统的核心技术之一.在列车高速运行时,具有防滑控制功能的列车制动控制系统,既能实现良好的滑行控制,又能充分利用轮轨之间的黏着作用力.主要介绍了和谐号动车组制动防滑系统,包括制动防滑系统的基本原理,硬件组成,滑行检测方法,防滑控制方法以及控制策略等.通过防滑试验验证了和谐号动车组制动防滑...  相似文献   

14.
针对高速列车自动驾驶系统精确进站停车问题,基于列车动力学模型和列车制动系统模型,设计1种自适应模糊滑模控制器,通过模糊切换以补偿列车运行过程中受到的基本阻力、线路附加阻力以及外部未知随机扰动等非线性扰动的影响。根据滑模控制理论,利用列车运行过程中的状态偏差,设计基于跟踪误差的等效控制器,以求解列车制动等效控制量;考虑外部扰动,基于优秀司机驾驶经验的模糊推理规则,设计切换控制器,以得到精确控制量。采用本文控制算法对列车制动过程进行仿真验证,并与传统的PID控制和基于指数趋近律的滑模控制进行对比。结果表明:在考虑附加阻力和外部扰动情况下,自适应模糊滑模控制器能够柔化非线性切换控制信号,削弱滑模控制固有的抖振现象,实现对参考轨迹的精确跟踪,并最终实现精确停车;即使在列车制动系统实际控制输出出现偏差时,设计的控制器仍能控制列车精确跟踪参考制动曲线。  相似文献   

15.
针对高速列车模型参数时变、非线性、高阶复杂等特点,提出了基于特征模型的高速列车二阶系统最优化PID控制方法。特征模型和原动力学模型在输出上是等价的,不需要考虑列车实际的物理特性,将模型简化,降低了模型的复杂度。首先对列车进行基本动力学分析,由高速列车一般单质点动力学模型推导建立特征模型。然后采用梯度矫正辨识算法对模型慢时变参数进行辨识优化,通过辨识仿真得到的估计值和模型值对比,进一步来验证特征模型时变参数对模型精确度的影响。最后,通过设计最优控制器和最优PID控制器,对列车速度和位置进行误差跟踪控制,得到两种控制器下的误差跟踪仿真结果,通过采用稳态误差、超调量和调节时间三项系统参数进行结果对比,说明了最优PID控制器的控制效果更加良好,也由此说明特征模型对控制器的设计是有效的。  相似文献   

16.
为研究制动荷载作用下桥上无砟轨道动力响应问题,建立车辆子系统模型和无砟轨道-桥梁子系统模型。根据高速列车制动减速度特性曲线确定列车制动力,利用Hertz理论求解轮轨力,通过交叉迭代法求解有限元数值方程。以4节编组的CRH2型动车组在桥上无砟轨道制动为例,进行系统动力响应分析。研究结果表明:轨道、桥梁结构的纵竖向位移和加速度均逐层递减,梁端处轨道结构的竖向振动比跨中处大;列车制动过程中列车速度逐渐减小引起轨道结构的竖向动力响应也减小;列车停车后,轨道结构和桥梁的纵向位移反向突变、纵向加速度突变,随后都有自由衰减的趋势;列车停车瞬间,列车和桥梁出现纵向最大振动。研究成果可为桥上无砟轨道的设计提供理论支持。  相似文献   

17.
针对城市轨道交通列车电空制动系统控制过程中外界干扰、执行机构时滞、基本阻力不确定等特性造成ATO(列车自动运行)系统速度跟踪及停车不准问题,根据李雅普诺夫稳定性理论提出一种基于SMARC(滑模自适应鲁棒控制)的城市轨道交通列车电空制动控制策略,设计城市轨道交通列车ATO系统基于SMARC的制动控制器。通过鲁棒控制将系统模型中非线性、输入时滞和外界扰动等所有不确定量减小到最小范围,同时也削弱了滑模控制器的抖振现象,增强了控制器的鲁棒性;进一步采用滑模控制减小列车制动过程中速度跟踪误差和减速度误差,从而获得较高的停车精度。仿真结果表明,基于SMARC的制动控制器的控制能完全满足城市轨道交通列车制动要求。  相似文献   

18.
防滑保护是高速列车制动系统的核心技术之一。防滑控制参数和控制逻辑是防滑控制系统的难点和核心.通过对防滑控制理论的深入研究及国内外防滑标准的系统梳理,结合高速动车组制动系统技术平台的设计和开发经验,设计了高速动车组制动系统的防滑技术方案,采用了一种基于速度差和减速度的复合判据式防滑控制策略.仿真测试和线路试验的结果验证了所设计的防滑控制系统的有效性和可靠性,为实现我国高速动车组制动系统防滑控制的完全自主化奠定了理论基础和技术支持。  相似文献   

19.
从高速动车组制动系统的设计原理出发,阐述了动车组制动系统故障诊断及安全措施的设计理念及实现方法:从设计的本质安全着手,考虑到各种可能出现的故障及其可能导致的后果的严重程度,设计对应的识别、判断及控制方法,系统自动或提示乘务人员处理故障或隔离故障设备、限速运行或者自动停车,从而确保列车的安全。本文介绍的故障诊断及安全措施的设计方法在我国高速动车组上得到了很好的验证。  相似文献   

20.
为了给实际动车组制动控制系统的研发和技术改进提供测试和验证平台,在对制动控制系统原理及制动功能分析的基础上,以CRH2动车组中一动一拖基本制动单元为对象,通过分析制动控制装置的输入输出信号,完成了制动控制系统半实物仿真平台硬件系统的设计和构建,以及制动控制相关的所有功能软件的设计;并经过软硬件系统的联合调试,有效实现了列车制动过程的半实物仿真运行。试验结果表明,所设计平台能够模拟实际运行环境,能够准确而较为真实地反映动车组的制动控制性能,达到了预期目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号