首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的:既有桥上纵连板式无砟轨道研究多考虑桥梁整体温度变化而忽略温度梯度的影响,为探明高速铁路大跨度桥上纵连板式无砟轨道系统受力规律,本文基于长期实测温度场数据,利用统计方法获得结构具有概率保证的非线性温度模式,建立考虑钢轨-轨道板-底座板-梁体-桥墩的空间一体化有限元模型,选取沪昆客运专线某大跨连续梁桥工程实例,计算分析实测非线性温度模式下桥上各层轨道结构相对位移以及钢轨纵向附加力的分布规律。研究结论:(1)只考虑轨道板及底座板实测温度模式时,钢轨附加应力基本为0;(2)桥梁温度梯度会引起梁缝处钢轨附加应力的急剧增大,在研究桥上纵连板式无砟轨道时需考虑桥梁温度梯度的影响;(3)大跨度连续梁桥固结机构处水泥沥青砂浆变形会超过其实测极限变形位移,建议在连续梁固结机构上方同样设置剪力钢筋;(4)无砟轨道断板会导致钢轨附加应力急剧增大,因此应严格限制纵连板式无砟轨道断裂的发生,若需更换轨道板及底座板时,应在合龙温度范围进行更换;(5)本研究结果可为大跨度桥上纵连板式无砟轨道的设计与改进提供参考。  相似文献   

2.
温度梯度荷载对桥上无砟轨道几何形位的影响分析   总被引:2,自引:2,他引:0  
我国在设计桥上无缝线路时,桥梁温度荷载按照相关规范规定采用均匀温度荷载,这与桥梁在自然环境中所受到的温度梯度荷载存在一定的差异。基于梁轨相互作用原理,利用有限元方法,建立桥上CRTSⅢ型板式无砟轨道有限元模型,分别计算分析在均匀温度和竖向温度梯度作用下桥梁变形对无砟轨道结构几何形位的影响,有益于进一步深入研究桥梁温度荷载的合理取值。结果表明:与均匀温度荷载相比,竖向温度梯度荷载对桥上无砟轨道几何形位影响很大,且主要影响桥上无砟轨道的高低几何形位,对无砟轨道的水平几何形位也有一定影响,因此建议在设计桥上无缝线路时,考虑桥梁温度梯度荷载,并对桥上无砟轨道结构的几何形位进行限制。  相似文献   

3.
为探讨温度荷载作用下既有离缝无砟轨道结构层间损伤发展规律及上拱变形对轨道结构力学特性的影响,基于有限单元法和界面损伤内聚力模型,建立CRTSⅡ型板式无砟轨道有限元模型.计算结果表明:温度梯度荷载作用下,层间损伤萌生于离缝区与黏结区衔接处板角位置,并随温度梯度的持续增大斜向发展;黏结区损伤横向贯通后,轨道板竖向位移存在明...  相似文献   

4.
针对目前我国高速铁路中普遍采用的32 m简支箱梁与CRTS II型无砟轨道结构,基于传热学基本理论,考虑太阳辐射与对流换热,采用ANSYS有限元软件建立箱梁-无砟轨道温度场仿真分析模型,分析整个结构在典型时刻的温度分布特征,并研究无砟轨道板、箱梁顶板、腹板和底板等典型位置处的温度随时间变化规律。基于温差最大时刻的结构温度分布,根据温度场数值仿真模型计算结果,拟合得到无砟轨道结构和无遮盖部分箱梁的竖向温度梯度分布模式,可为我国典型地区CRTS II型无砟轨道的温度应力计算提供参考。  相似文献   

5.
在车辆荷载和温度作用下,CRTSⅢ型板式无砟轨道由于自密实混凝土层与底座板间产生离缝,发生应力集中和局部变形,对无砟轨道服役状态和使用寿命造成明显影响。基于ABAQUS有限元模型,计算车辆与温度不同荷载组合下,层间离缝横向和纵向发展对无砟轨道结构受力变形的影响,探究伤损演变规律和维修限值。研究结果表明:层间离缝宽度小于1.5m,轨道结构受力和变形的影响很小;离缝发展至两侧钢轨正下方后,轨道结构变形和应力均增大明显;离缝长度大于1.2m,对轨道板出现受拉裂缝和无离缝端上翘;正温度梯度荷载对轨道板弯折变形和自密实混凝土层纵横拉应力以及负温度梯度荷载对轨道板上翘和纵横拉应力均有叠加放大效应。  相似文献   

6.
无砟轨道弹性地基梁板模型   总被引:4,自引:0,他引:4  
根据无砟轨道的结构和受力特点,采用弹性点支承梁模拟钢轨、板壳单元模拟无砟轨道各结构层,建立无砟轨道弹性地基梁板模型,进行无砟轨道各结构层的荷载弯矩计算,并与弹性地基叠合梁模型及弹性地基梁体模型进行对比.结果表明:弹性地基梁板模型更符合无砟轨道结构的受力特点,能够有效地反映承载层的空间弯曲变形;在该模型的钢轨上施加轮载可直接得到无砟轨道各承载层的纵、横向弯矩,既克服了弹性地基叠合梁模型忽略无砟轨道纵、横向变形协调条件,将纵、横向弯矩分开计算而造成的较大计算误差的缺点,也克服了弹性地基梁体模型层间约束强且计算繁琐的缺点.弹性地基梁板模型计算的结果与遂渝线实测结果基本吻合,验证了模型的合理性和有效性.  相似文献   

7.
为研究轨道交通 U 梁的温度梯度效应,整理并总结目前国内既有项目对高架 U 梁进行的温度监测模式及 研究结果,结合实体有限元模型计算分析,得出 U 梁在各温度梯度模式下的温度应力及变形值,并提出可应用于 工程设计的 U 梁温度梯度模式。研究结果表明,温度梯度荷载工况下的 U 梁纵向正应力值在设计正应力值中占 比相对较大,而横向应力和局部变形差相对较小;轨道交通线路走向大体呈东西向时,高架 U 梁运营后的腹板竖 向温度梯度建议采用指数函数,底板竖向温度梯度建议采用折线函数,研究结果可为相关工程设计提供参考。  相似文献   

8.
桥上CRTSⅡ型板式无砟轨道系统梁轨相互作用的传力体系与既有的有砟轨道和单元板式无砟轨道线路的轨道结构受力变形特征有较大的不同。利用ANSYS有限元软件对桥上CRTSⅡ型板式无砟轨道的受力变形特征进行分析,选择32 m简支梁和(48+80+48)m连续梁开展了长期温度荷载效应监测,分析桥上CRTSⅡ型板在温度荷载作用下的结构受力变形特征。结果表明,在降温和升温过程中,简支梁和连续梁梁体温度伸缩量与温度的分布规律相吻合,"两布一膜"减少了梁轨间相互作用力。说明桥上CRTSⅡ型板式无砟轨道设计原理和设计方法是合理的,为相关技术规范的制定提供了科学依据。  相似文献   

9.
基于高速铁路路基工后沉降产生于地基沉降变形的机理及无砟轨道各结构层间关系的处理,研究高速铁路无砟轨道—路基变形计算模型。以双块式无砟轨道为例,以下部边界分别为地基面和路基面,道床板与支承层间的关系分别按层间接触和层间结合良好考虑,构建不同条件下的无砟轨道—路基变形计算模型。采用ABAQUS软件进行模型的计算,结果表明,下部边界为地基面和层间关系按接触考虑的计算模型能够反映轨道长波不平顺产生于路基变形的机理,计算结果符合双块式无砟轨道实际的结构特点和受力特征;而下部边界为路基面和按层间结合良好构建的无砟轨道—路基变形计算模型,由于支承层直接承受输入的"强制性"变形荷载,改变了无砟轨道适应路基变形的协调关系,从而导致路基变形引起的无砟轨道层间离缝及支承层产生的拉应力计算值过大,不符合双块式无砟轨道的结构设计原理。由此验证了下部边界为地基面及无砟轨道各结构层按层间接触构建无砟轨道—路基变形计算模型的合理性和可靠性。  相似文献   

10.
随着桥上无缝线路在运营中出现各种病害,桥上无砟轨道的横向稳定性问题越来越引起重视。基于梁轨相互作用原理,利用有限元方法,建立桥上CRTSⅢ型板式无砟轨道横向稳定性分析模型,分别计算分析梁体在均匀温度和双向温度梯度下对无砟轨道结构横向变形的影响,有益于进一步深入研究桥上无砟轨道的横向变形机理。结果表明:与均匀温度荷载相比,双向温度梯度荷载对无砟轨道结构横向变形影响相对较小,但对钢轨轨距的影响较大,桥上无砟轨道结构的横向稳定性受梁体伸缩附加力与梁体几何形变的共同影响。因此建议在设计桥上无缝线路时,无论考虑哪种梁体温差荷载,都需要对桥上无砟轨道结构的横向稳定性进行检算。  相似文献   

11.
为满足无砟轨道非线性损伤分析及长期服役性能研究的需求,基于混凝土塑性损伤本构理论和CA砂浆劈裂抗拉试验结果,建立可考虑无砟轨道各组成结构材料非线性损伤的有限元分析模型。主要考虑温度和列车荷载作用,对比分析塑性损伤模型与线弹性模型对计算结果的影响。结果表明:当无砟轨道结构的受力变形较小时,非线性塑性损伤模型与线弹性模型的计算结果相差不大;当无砟轨道升温幅度超过30℃、正温度梯度超过60℃/m或列车荷载大于225 kN时,两种模型的计算结果开始产生差异且随着荷载的增大而不断扩大。配筋的塑性损伤模型与现场实际结构和材料属性较为相符,可为无砟轨道非线性分析、塑性变形及损伤累积效应分析、长期服役性能研究等提供参考。  相似文献   

12.
为研究反射隔热涂料对无砟轨道温度及温度应力的降低效果,建立考虑气温、太阳辐射和风速的无砟轨道温度场计算模型,并开展试验对其进行验证,分析反射隔热型涂料对成都地区双块式轨道温度的影响,分别计算使用该涂料前后单元式和纵连式轨道的温度应力,并探讨不同风速下该涂料的效果。研究结果表明:建立的无砟轨道温度场模型是准确和有效的;成都地区使用该类型涂料道床板温度梯度能够降低约50%,但对轨道整体温度影响不大;使用涂料后单元式无砟轨道翘曲应力降低较为显著;风速超过4级后反射隔热涂料降低轨道翘曲应力的效果一般。  相似文献   

13.
在吸收国内外研究成果的基础上,建立能够考虑无砟轨道—路基系统各部件间接触状态非线性的列车-路基上板式无砟轨道三维有限元耦合动力学模型,并对建立的三维有限元耦合动力学模型进行相应验证。运用建立的耦合动力学模型,对列车在路基上板式无砟轨道线路上高速行驶时,在列车荷载和无砟轨道温度梯度荷载共同作用下,列车-路基上板式无砟轨道耦合系统动力特性进行研究。研究结果表明:无砟轨道温度梯度荷载对列车-路基上板式无砟轨道耦合动力学系统轮轨力特性影响很小,但对无砟轨道各部件动力特性有显著影响,在进行无砟轨道各部件动力特性研究时,有必要考虑无砟轨道温度梯度荷载的不利影响;对于Ⅱ型板式无砟轨道,无砟轨道温度梯度荷载对列车-路基上板式无砟轨道耦合动力学系统动力特性影响与裂缝间距有很大关系,裂缝间距越小,其影响越小。  相似文献   

14.
建立低速磁浮轨道梁有限元模型,通过稳态热传导分析,获得上下表面温差和左右侧面温差荷载作用下轨道梁的温度场,运用热-结构耦合分析方法,计算了不同温差荷载作用下磁浮轨道梁的温度变形。计算结果表明,磁浮轨道梁的温度沿温差荷载作用方向近似线性分布,温度梯度随温差值增加而增大;在本文计算条件下,环境温度对轨道梁的温度变形影响较小,当温差荷载大于20℃时,温度引起的磁浮轨道梁竖向或横向挠度超过高速磁浮交通相关规定限值,故实际工程应用中有必要对低速磁浮轨道梁的温度效应进行校核分析。  相似文献   

15.
针对地铁预制板式无砟轨道力学特性理论研究存在的不足,建立地铁预制板式无砟轨道三维非线性有限元空间力学模型,研究单一及组合荷载下普通和减振地段地铁预制板式无砟轨道空间力学特性。研究结果表明:列车和无砟轨道下部基础不均匀沉降荷载对地铁预制板式无砟轨道力学特性有较大影响,而温度荷载只对挡块受力有一定的影响;列车荷载、无砟轨道下部基础不均匀沉降荷载及组合荷载下减振地段和普通地段地铁预制板式无砟轨道力学特性差别很大;单一荷载计算结果叠加和组合荷载计算结果有较大差别,宜对组合荷载下地铁预制板式无砟轨道力学特性进行分析研究;地铁预制板式无砟轨道有限元分析模型宜考虑层间接触状态非线性,并考虑挡块与轨道板相互作用。  相似文献   

16.
水泥乳化沥青砂浆层离缝是CRTSⅡ型板式无砟轨道的主要病害。本文采用双线性黏结滑移模型表征轨道板与砂浆层的黏结关系,对推板时的层间传力规律进行理论分析;利用有限元方法,根据推板试验结果对层间参数进行拟合,研究推板时层间传力规律;基于黏结滑移模型,建立CRTSⅡ型板式无砟轨道三维有限元模型,分析极限温度梯度荷载作用下层间破坏规律。结果表明:温度梯度荷载作用下,层间的伤损主要产生在板边,与现场观察的离缝一致;层间黏结强度的增加能够减小层间伤损值及伤损区域,黏结强度小于0.025 MPa时在正温度梯度荷载作用下轨道板容易出现上拱现象;该层间模型中的弹性段长度δ_1值对层间传力规律影响较大,δ_1值的增加能够有效减小层间伤损值及伤损区域。  相似文献   

17.
在夏季持续高温天气下,CRTSⅡ型板式无砟轨道由于温度梯度的持续作用,轨道板与砂浆层之间易产生层间离缝。基于现场气温与轨道板温度梯度实测数据,采用有限元建模计算分析持续正温度梯度作用下轨道板与砂浆层间离缝产生和发展的特征。研究结果表明:持续高温天气期间,轨道板温度整体高于气温,且温度力作用过程中正温度梯度虽未超过规范规定的轨道板设计正温度梯度90℃/m,但轨道板与砂浆层之间仍能产生层间离缝。通过比较,持续高温与温度梯度90℃/m作用下,两者层间损伤程度较为接近,且靠近板角位置层间离缝现象比其他位置更加严重。建议工务部门重视持续高温对无砟轨道工作性能的影响。  相似文献   

18.
为降低太阳辐射对纵连结构无砟轨道的影响,采用反射隔热材料实地应用研究,建立有限元模型分析反射隔热材料对太阳辐射在纵连结构无砟轨道温度和应力影响。研究结果表明,反射隔热材料可将轨道板(道床)表面温度降低10℃以上,混凝土内部温度梯度降为60℃/m,轨道板(道床)应力降低到9.5 MPa,有效降低纵连无砟轨道结构纵向应力和垂向位移,对防治因太阳辐射造成的纵连无砟轨道结构上拱病害有较好效果。  相似文献   

19.
为分析反射隔热涂料对无砟轨道温度场的影响,对现场铺设的CRTSⅡ型轨道板进行长期温度监测。通过试验数据分析,确定CRTSⅡ型轨道板的最大正温度梯度,利用热传导解析式可推算不同厚度轨道板的温度梯度修正系数。以CRTSⅠ型板式无砟轨道为例,建立实体有限元模型,分析反射隔热涂料对轨道板翘曲、树脂填充层受力和变形的影响。结果表明:涂刷反射隔热涂料能够在一定程度上减小太阳辐射对轨道板温度梯度和日温度变化的影响,有效控制轨道板的翘曲、树脂填充层的受力和变形,轨道板最大翘曲应力降低25%,板中最大上拱量减小56%,板角最大下沉量减少25%,树脂填充层所受最大压应力和最大压缩变形分别减少33.6%,33.3%。  相似文献   

20.
研究不同荷载作用下,高速铁路路基上双块式无砟轨道道床板空间力学特性。钢轨及道床板中钢筋用梁单元模拟,道床板、双块式轨枕、支承层以实体单元模拟,钢轨与道床板、道床板混凝土与钢筋、支承层与路基之间的连接用弹簧单元模拟,建立了可考虑混凝土开裂的路基上双块式无砟轨道三维有限元力学模型,分析了自重荷载、列车垂向荷载、不沉匀沉降荷载、温度梯度荷载作用下道床板的空间力学特性。结果表明:温度梯度荷载对混凝土纵、横向拉应力的影响最为显著;在列车荷载、不均匀沉降及温度梯度荷载作用下,钢筋纵向拉应力均超过了20 MPa;不同荷载作用下,支承层厚度、支承层弹性模量、道床板厚度等参数变化对混凝土和钢筋力学特性的影响不同;混凝土和钢筋纵向拉应力随着道床板裂缝间距的增加而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号