首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
地震液化对桥梁桩基础极限承载力的影响   总被引:1,自引:0,他引:1  
地震后砂土液化是地震的主要震害之一.对砂土液化前后桥梁桩基的极限承载力进行了数值计算,结果表明砂土液化后,基桩的横向极限承载力明显降低,其降低程度与桩周可液化土体的厚度及液化程度相关.桩周可液化土体厚度越大,液化程度越高,则地基土的水平抗力系数m降低越多,桩基的横向极限承载力降低也越多.同时,砂土的液化导致基桩的水平位移在同等载荷作用下也有较大的增长.  相似文献   

2.
京福高速公路泰安至曲阜段全长49.863Km,其中在K15+450~K25+000段集中了大汶河特大桥、土门特大桥等大、中、小桥11座。由于地质情况多变.使桥梁桩长设计不等,且有流砂、溶洞等不利因素的影响.给桩基成孔造成了很大的困难.使桩基施工成为该项目的重点和难点。  相似文献   

3.
为了提高位于液化土层桥梁桩基的抗震性能, 基于三向六自由度大型振动台模型试验, 分析了地震波作用下桩顶水平位移、桩身加速度及弯矩等动力响应, 并研究了地震波加载后桩基的损伤。试验结果表明: 在地震波作用下, 随着液化层埋深的增加, 土体液化后产生的侧扩效果逐渐减弱, 因此, 桩顶水平位移峰值逐渐减小, 但是当地震加速度超过0.6g时, 桩顶水平位移峰值不受液化层埋深的影响; 因地震荷载作用下粉细砂土层液化, 桩身加速度在该土层位置明显增大; 上部覆盖层压力作用使土层抗剪强度增大, 因此, 桩顶放大系数随着液化层深度的增加而增大, 且桩顶放大系数在Kobe波作用下最大, 5002波作用下最小, 砂土液化同时造成土层强度降低, 从而使桩身加速度在该土层出现放大效应; 桩身弯矩最大值均出现在液化层和非液化层分界处, 且在相同强度地震波作用下, 桩身弯矩最大值随着液化层埋深的增加呈增大趋势, 当地震加速度从0.30g增大到0.35g后, 桩身弯矩增幅为33.3%, 增幅最大; 不同类型地震波对桩基的破坏程度并无差异, 在加速度0.35g作用下, 桩基基频无变化, 但当地震波强度超过0.40g时, 桩基基频从1.65 Hz突降到0.45 Hz, 因砂土层液化产生侧向位移, 桩身剪切变形, 最终导致桩基损坏。综上所述, 当液化层较浅时, 应重点考虑地震波作用下过大的桩顶水平位移; 在桩基抗震设计时, 必须考虑液化层和非液化层分界处桩基的抗弯能力和液化层埋深的影响。   相似文献   

4.
工程概况宁丹路分离立交位于南京绕越高速K11+904.该桥上部结构为4×18m预应力连续箱梁.下部结构为柱式墩+桩基础/重力式台+扩大基础.桥长92m。桩径设计为Ф150cm,设计桩长23m,共15根桩基,  相似文献   

5.
工程概况宁丹路分离立交位于南京绕越高速K11+904,该桥上部结构为4×18m预应力连续箱梁,下部结构为柱式墩+桩基础/重力式台+扩大基础,桥长92m。桩径设计为φ150cm,设计桩长23m,共15根桩基,单根桩砼理论  相似文献   

6.
以荷载传递法为工具,从承载力和沉降的角度分析有效桩长的存在机理,对确定有效桩长的不同方法进行对比,并探讨不同参数对有效桩长及有效承载力的影响,可为超长桩桩长设计以及桩基持力层选择提供参考依据,具有较高的工程应用价值。  相似文献   

7.
单桩有效桩长的计算分析   总被引:1,自引:0,他引:1  
以荷载传递法为工具,从承载力和沉降的角度分析有效桩长的存在机理,对确定有效桩长的不同方法进行对比,并探讨不同参数对有效桩长及有效承载力的影响,可为超长桩桩长设计以及桩基持力层选择提供参考依据,具有较高的工程应用价值.  相似文献   

8.
通明海特大桥主桥为双索面叠合梁斜拉桥,桥跨布置为(146+338+146)m。主墩基础为大直径摩擦钻孔灌注桩、设计桩长137.5 m,承台尺寸为55×26×6 m,索塔采用A型塔设计。受多方面因素影响,主墩较原计划延后开工将近4个月,直接影响通明海特大桥主线工期,如何快速完成主墩施工就成了关键的技术攻关点。经过对比分析、层层筛选,最后决定桩基采用旋挖钻机成孔、承台钢套箱一体化设计、索塔采用改进的6 m爬模及钢筋整体预制吊装等新工艺,从而确保主墩较原计划提前5个月完成施工任务,形成了高效保质的成套技术,为后续同类型桥梁快速施工提供了有效经验数据。  相似文献   

9.
沪杭客运专线横潦泾特大桥的主桥桩基采用大直径深孔灌注桩,主墩桩长达到125.5m,直径2.0m。钻孔桩施工采用反循环为主、正循环为辅、气举反循环法清孔的施工工艺。介绍了护筒埋设、泥浆制备、成孔作业、混凝土灌注等关键施工技术,并着重介绍了斜孔、堵钻、孔壁坍塌、糊钻、漏浆等常见事故的预防及处理措施。实践证明采用此工艺完成的大直径深孔灌注桩质量都符合设计要求,效率、质量与安全均达到了预期的效果。  相似文献   

10.
地震作用下沉管地基砂土液化可能性研究   总被引:2,自引:0,他引:2  
地震时饱和砂土的液化造成了许多建筑物的破坏,规划中的京沪高速铁路南京上元门越江工程穿越Ⅶ度地震区,如果采用隧道方案,由于隧道洞身及洞底主要穿越粉细砂层,在地震作用下极易液化。针对上元门地区的具体情况,分析了地震作用下地基的液化机理,通过理论计算和分析试验数据给出了地震作用下沉管隧道3个典型断面的地基砂土液化深度。指出覆盖层较薄的江中段砂土液化深度将达到隧道底下1.5m处,可能造成隧道地基整体失稳,需进行加固处理,本文结论可为沉管的设计施工提供参考。  相似文献   

11.
辽河特大桥39#主墩桩基钢护筒施工技术   总被引:1,自引:0,他引:1  
辽河特大桥39#主墩基础采用Φ2.5m的钻孔桩,桩长110m。钢护筒直径为2.7m,长度为29.2m。结合工程实例,重点介绍钢护筒的设计加工、振动锤的选型及钢护筒定位下沉技术。  相似文献   

12.
介绍哈尔滨绕城公路西段松花江特大桥主桥主塔桩径2.0m,桩长70m的钻孔桩水下砼施工技术。  相似文献   

13.
依托哈萨克斯坦共和国国级公路第6标段中的扎姆希河跨河桥工程,采用预制群桩技术提高施工效率和质量。通过分析群桩基础不同桩长、桩间距和桩端阻力对沉降的影响,绘制荷载与沉降的关系曲线,研究预制桩基础的特性和应用。研究表明,该桥桩基设计的最优方案为桩的长径比约为20,桩间距为桩径的3.4倍,桩长9 m。  相似文献   

14.
工程概述及地质情况 工程概述 某特大桥设计上部结构为28×20m先张空心板梁,桥梁全长560m,该桥基础全部采用钻孔灌注桩,桥墩桩径Φ=150cm,桥台桩径Φ=120cm,嵌岩桩设计,桩长范围25~35m。  相似文献   

15.
主要介绍哈尔滨绕城公路西段松花江特大桥主桥9#主塔桩径2.0m、桩长70m的钻孔桩成孔施工技术。  相似文献   

16.
针对浅海海域饱和砂土采用标准贯入试验法和抗液化剪应力法进行液化判别分析,对海底浅表层砂土液化判别时,发现对于设计地震第一组、7度和8度条件下,采用《建筑抗震设计规范》(GB50011)2001版推荐的原判别公式比2010版推荐的新公式液化判别结果安全度要高,当工程场地浅表层有砂土分布时,建议采用原判别公式进行液化判别更偏于安全。抗液化剪应力法对海域砂土的液化判别成功率较高,有着较好的适宜性,是值得推广应用的液化判别方法。  相似文献   

17.
高速公路桥梁相邻桥墩差异沉降对上部结构稳定和安全有重要影响,为探明串珠状溶洞区域高速公路桥梁下部相邻桥墩差异沉降的关键影响因素,采用有限元方法建立考虑溶洞与桩基几何特征、地层岩土特性的桩土一体化三维仿真模型,重点分析溶洞高度、宽度、数量以及桩基长度、直径等因素变化对相邻桥墩差异沉降的影响规律。结果表明:相邻桥墩差异沉降量随溶洞高度、溶洞宽度和溶洞数量的增大而增加,其中溶洞数量对差异沉降影响更为显著;当桩长由20.4 m增至47.4 m时,相邻桥墩差异沉降量增大25.42 mm;而当桩径由1.2 m增至1.8 m时,相邻桥墩差异沉降量减小26.05 mm;与溶洞特性相比,桩基设计参数对相邻桥墩差异沉降量影响更大;当溶洞区相邻桥墩下部桩长不一致时,可通过调整桩径控制其差异沉降量,以确保桥梁上部结构稳定和安全。  相似文献   

18.
某公路特大桥中心里程为K35+995,全长1655.2m:下部结构桩基504根,桩基直径1.25m主要地质为上层卵石土层,厚约8~15m,下层为白云质灰岩;O号台、52号台、1~9号墩位处桩基采用挖孔桩施工,50、51号墩位处采用扩大基础施工.10~49号墩位处桩基采用钻孔灌注桩施工,钻孔桩类型分柱桩和摩擦桩。该处地理结构为地下水汇流区,地下水发育,地下溶洞较多。  相似文献   

19.
大直径超长钻孔灌注桩承载性状   总被引:15,自引:2,他引:13  
基于芝川河特大桥的桩基原位试验,对粉质砂土地区大直径超长钻孔灌注桩的承载力性状进行了分析,并将实测成果与现行《公路桥涵地基与基础设计规范》中经验公式的计算结果进行了对比分析。发现大直径超长钻孔灌注桩的承载力性状和中长桩或短桩的承载力性状具有明显差异;粉质砂土处于地面以下的不同部位,其侧阻力有较大差异;规范公式计算承载力结果明显小于原位试验结果,相差超过50%。研究结果表明,相同土质处于地面以下不同部位对桩产生的极限摩阻力不同,规范公式不适于评价大直径超长桩的承载力。  相似文献   

20.
为研究山洪冲刷对陡坡桥梁桩基的竖向承载特性的影响,采用MARC有限元软件模拟山洪冲刷作用下不同桩长、桩径与坡度的桩基竖向承载变化规律,并通过计算分析得出:1桥梁的桩径或桩长越大,桩基竖向所受的承载力越大;坡度越大,桩基竖向承载力越小;2相同坡度、桩长的桩基在同一冲刷深度中,其桩径愈大竖向所受承载特性变化越大;3同一冲刷深度作用下,相同桩径、坡度的桩基其桩长越短竖向所受承载力变化越大;4相同桩径、桩长的桩基在同一冲刷深度中,坡度越小桩基竖向承载特性变化越明显;5冲刷深度小于2倍桩径时,山洪冲刷引起桥梁桩基的竖向承载力变化较弱;反之,则较强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号