首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对以往轨道刚度计算方法只能得出轨下垫板静刚度的取值范围或下限值,而不能确定轨道整体刚度的问题,运用大型轮轨动力学软件NUCARS建立32.5t轴重货车—轨道系统耦合动力学模型,采用动力敏感系数分析方法,通过分析轨道结构各种部件刚度组合情况下的车辆、轨道系统动力特性,研究32.5t轴重货车作用下重载铁路轨道的合理刚度。结果表明:钢轨垂向位移、道床压力和垫板压力对垫板刚度较为敏感;轨枕垂向位移、轨枕垂向加速度、道床压力对道床刚度较为敏感;以轨道动力特性的综合效应最小为目标建立目标函数,筛选得出32.5t轴重货车作用下重载铁路轨道结构的部件刚度最优匹配方案是轨下垫板刚度为140kN·mm-1,道床刚度为150kN·mm-1;最优部件刚度匹配方案所对应的轨道结构整体刚度为82kN·mm-1。  相似文献   

2.
建立了高速铁路桥梁及CRTSⅡ型板式无砟轨道结构的有限元模型,计算分析了不同墩顶位移计算工况下的轨道不平顺,并结合相关规范给出了桥梁下部结构的位移限值建议值。研究发现,桥墩横向位移对轨向不平顺影响较大,轨向不平顺极值与桥墩横向位移基本呈线性关系,桥墩横向位移限值建议为9 mm;桥墩垂向位移对高低不平顺影响较大,高低不平顺极值与桥墩垂向位移基本呈线性关系,桥墩垂向位移限值建议为12 mm;当桥墩发生双向位移时,会使得高低与轨向不平顺小幅度增加,故桥墩双向位移限值建议为7.2 mm。  相似文献   

3.
为研究120 km/h速度下地铁扣件节点垂向位移的影响因素,通过对广东某城市地铁现场测试结果与多刚体动力学仿真分析结果的对比分析,探讨行车速度及轨道不平顺对地铁扣件节点垂向位移的影响。最后对该地铁在最不利行车情况下扣件处钢轨垂向位移做出预测。研究结论:实测120 km/h速度下地铁扣件节点处钢轨垂向位移值仅比84 km/h速度下的值小5.89%,表明列车速度并非地铁扣件节点垂向位移的主要影响因素;仿真分析表明:轨道不平顺是影响钢轨垂向位移的主要因素之一,定期养护对控制钢轨垂向位移至关重要;最不利行车情况下DZ-Ⅲ型地铁扣件节点垂向位移约为2.051 mm,比试运营实测位移增长约86.27%。  相似文献   

4.
中低速磁浮交通提速是目前研究趋势,但速度的提升会影响车辆运行稳定性。为探究提速后轨道的动力响应及其适应性,通过建立中低速磁浮车-轨-桥耦合动力学模型,对更高速度下轨道的振动响应进行仿真分析,并以长沙磁浮快线为对象,测试100~140 km/h速度区间内轨道的振动加速度及振动位移。研究结果表明:轨道各结构的振动响应存在差别,沿着F轨-轨枕-轨道梁逐渐减弱,车辆对轨道的垂向冲击大多被F轨的振动及弹性变形吸收,而横向冲击则更多地传递至下方的轨枕和轨道梁;随着车辆运行速度的提高,轨道的振动加速度响应逐渐加剧,轨道梁横向振动加速度较之垂向振动加速度增加更为明显,而轨道的振动位移响应则基本未表现出与速度的相关性;当车辆的运行速度提升至140 km/h后,轨道梁的垂、横向最大振动加速度分别为2.37 m/s2和0.96 m/s2,速度提升至160 km/h时,轨道梁的垂向最大振动位移为3.55 mm, F轨内外磁极面最大高度差为0.44 mm,均在规定的限值范围内,轨道的振动响应满足要求。  相似文献   

5.
在对国内相关标准所规定限值总结的基础上,建立车辆-轨道空间耦合动力学计算模型,重点研究分析不同线路条件、不同类型列车运行工况下弹性支承块式无砟轨道的安全性和稳定性。结果表明,弹性支承块式无砟轨道结构在不同运营条件下(客车最高速度200km/h、货车最大轴重27t):列车运行各项安全性指标及线路轨距动态变化量均在标准规定的限值以内;客车的横向平稳性指标最大值为1.85、垂向平稳性指标最大值为1.88,货车的横向平稳性指标最大值为2.23、垂向平稳性指标最大值为3.42,客车和货车平稳性指标满足1级的标准,平稳性良好。综合计算分析结果,弹性支承块式无砟轨道结构可适用于不同类型客货共线铁路运营条件。  相似文献   

6.
为了更好地进行聚氨酯减振浮置板轨道结构的选型设计,建立车辆-轨道系统动力分析模型,研究轨道板厚度、扣件刚度、减振垫刚度对聚氨酯减振浮置板轨道结构动力响应的影响。结果表明:轨道板厚度增大会导致钢轨加速度相应增大,而钢轨位移、轨道板加速度、基底加速度显著减小;扣件刚度减小会导致钢轨垂向位移增大,而钢轨、轨道板、基底加速度不同程度减小;减振垫刚度增大会导致钢轨垂向位移、垂向加速度减小,而轨道板、基底垂向加速度平稳增大。结合工程实际,建议轨道板厚度取260~300 mm,扣件刚度取20~40 kN/mm,减振垫刚度取0.02~0.03 MPa/mm。  相似文献   

7.
基于重载货车-有砟轨道耦合动力仿真模型,研究轨道常见的焊缝凹陷、钢轨波磨和三角坑病害特征,分析重载货车不同部件在病害作用下的敏感程度及响应幅值。结果表明:不同车速的空载和重载状态下,货车的车体、侧架、轴箱垂向加速度均随病害幅值增大而增大;不同车速下的货车侧架垂向位移受焊缝凹陷深度和磨耗深度的影响不大,但对三角坑幅值的影响较敏感。根据分析结果提出了国内测试货车的测试内容及安装技术方案,以C80货车为测试载体,加装长期自动检测的车辆状态感应模块、组合导航模块、自发电模块,实现基于C80货车动力响应的轨道状态检测。  相似文献   

8.
高速铁路曲线线路车线耦合系统动力学性能仿真分析   总被引:1,自引:0,他引:1  
依据系统工程理论,建立高速铁路曲线线路车线耦合系统有限元模型,对曲线线路在高速行车条件下的耦合系统动力学性能进行仿真,研究时速300 km等级高速动车组作用下曲线线路安全与平稳性指标,曲线线路轨道结构各部分的振动响应、列车速度与曲线半径和超高的关系.结果表明动车组以350 km·h-1的速度通过半径为5 500,7 000和9 000 m的曲线线路时,动车组的垂向和横向振动加速度以及平稳性能均满足舒适度要求,而且脱轨系数和轮轴横向力也能满足列车运行安全性要求;钢轨支点的横向力表现为过超高时内轨侧大、外轨侧小,欠超高时外轨侧大、内轨侧小;钢轨、轨枕的垂向和横向加速度随速度增加明显增大,而道床和路基的垂向加速度变化不大;钢轨和轨枕的横向动位移和动态轨距扩大量随速度的增加而增大;相同速度下,曲线半径小的轨道振动相对较大.  相似文献   

9.
针对我国第一条悬挂式单轨交通试验线开展行车动力学试验。试验线轨道梁桥为底部开口的钢结构箱梁,试验列车为基于锂电池驱动的悬挂式单轨列车,最高试验运行速度为60 km/h。试验结果表明:轨道梁桥结构具有良好的竖向和横向刚度,其垂向一阶自振频率和横向一阶自振频率分别为5. 60、2. 27 Hz,自振频率理论计算结果与实测结果基本相符;轨道梁桥结构的振动加速度随着行车速度的增加而逐渐增大,其跨中垂向和横向加速度最大值分别为0. 19g、0. 11g,满足铁路桥梁相关规范要求,轨道梁桥动态位移随着行车速度的增加无明显变化,表明列车对该轨道梁桥的动力冲击作用受速度影响较小,在所有测试工况中,轨道梁桥挠跨比小于1/1 100,动力冲击系数小于1. 1;列车在各种速度工况下,其横向平稳性指标较垂向平稳性指标略大,但两者平稳性指标均小于2. 75,表明运行车辆具有良好的平稳性。  相似文献   

10.
在两转向架上安装检查装置的EAST-i轨检车,可在普通线路和新干线部分区段行驶,速度可达275km/h。在三个车轴位置检测钢轨位移,根据不等弦支距法的测量结果,利用数字滤波器处理,得到用于实际轨道维护的10m弦正矢位移。采用光学轨道位移传感器不需与钢轨侧面接触就能检测钢轨位置。在新干线区段,每0.25ms测量钢轨位移传感器的垂向极大和极小值。从检测器垂向位移和测量误差判断,按速度275km/h的速度检查其精度为±0.5mm。在新干线列车和普通线路的混合运营区段,其垂向位移满足4mm基准值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号