首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
建立了无砟轨道线桥墩一体化计算模型,用数值模拟法,以一组60 kg/m钢轨客运专线18号可动心轨道岔布置在连续梁上为例,通过两种类型("门"形筋混凝土道床、带限凸台的道床板)无砟轨道桥上无缝道岔与有砟轨道桥上无缝道岔基本轨温度附加力、基本轨伸缩位移的比较,表明:无砟轨道桥上无缝道岔温度附加力分布规律、钢轨位移分布规律与有砟轨道桥上无缝道岔相似,"门"形筋及带限位凸台无砟轨道桥上无缝道岔因道床阻力大,尖轨及心轨相对道岔板的伸缩位移要小;对于带限位凸台的无砟轨道结构计算结果表明:单个凸台的支座刚度>250 kN/mm时,凸台支座胶垫的压缩量<1 mm.道岔板不同温度变化幅度的计算结果表明,随着道岔板日温差增大,基本轨温度附加力、伸缩位移、翼轨末端间隔铁受力、直尖轨尖端相对道岔位移、转辙器道岔板受力、辙叉道岔板受力均随之减小,而心轨尖端相对道岔板位移、导曲线道岔板受力、连续梁固定墩受力则随之增大.  相似文献   

2.
连续梁桥上典型道岔群纵向受力与变形分析   总被引:1,自引:1,他引:0  
连续梁桥上双线两组道岔对称布置和咽喉区外侧的单渡线是客运专线建设中主要的无缝道岔群布置形式,为了指导和完善连续梁桥上铺设道岔群时道岔和桥梁的设计方法,本文根据桥上无缝道岔纵向相互作用原理,建立了道岔—桥梁—墩台一体化有限元计算模型,以18号无缝道岔铺设在连续梁桥上为例,分析了这两种常见道岔群的纵向受力与变形规律.计算结果表明,两组道岔对称布置时,可按单组道岔进行计算,墩台承受两组单开道岔的传力;单渡线这种岔桥布置对道岔与桥梁的受力都是有利的.  相似文献   

3.
无砟轨道无缝道岔设计计算方法及受力与变形规律探讨   总被引:2,自引:1,他引:1  
铺设在无砟轨道基础上的无缝道岔中纵向力的传递机理与有砟轨道明显不同,主要区别为岔枕在道岔里轨与基本轨间不传递纵向力,限位器成为里轨和基本轨之间唯一的传力部件。就无砟轨道基础上无缝道岔的纵向力传递机理、钢轨受力及变形规律等进行探讨,为无砟无缝道岔设计提供参考依据。  相似文献   

4.
基于有限单元法的桥上无缝道岔设计计算理论,分析采用凸型挡台基础连接形式桥上无缝道岔交叉渡线钢轨、传力部件、轨道板和桥梁的受力与变形,归纳出桥上无缝道岔交叉渡线受力和变形规律,并对今后无砟轨道桥上无缝道岔交叉渡线设计提出建议。  相似文献   

5.
结合宁波地铁5号线前殷停车场的无缝线路设计方案,建立无砟轨道无缝道岔的空间耦合有限元仿真模型,对城市轨道交通7号无砟道岔无缝化后的钢轨强度、轨道稳定性、间隔铁受力及冻结接头受力等进行计算分析。研究结果表明:在温度荷载作用下,道岔基本轨承受一定的附加力作用,钢轨最大温度力出现在辙跟基本轨处;尖轨尖端纵向变形最大,基本轨纵向变形较小;冻结接头受力在岔头位置出现最大值;7号无砟道岔采用冻结接头的无缝化设计可行。  相似文献   

6.
通过空间有限梁单元理论,建立桥上CRTS Ⅱ型无砟轨道无缝道岔的岔一板一桥一墩一体化模型,分析滑动层摩擦系数对钢轨、道岔、轨道板、底座板、固结机构与墩台等结构部件温度附加力的影响,结果表明:钢轨应力和相对位移随着滑动层摩擦系数的增加而略有增大;摩擦系数较大时,轨道板、底座板总体纵向力有较大幅度提高,对轨道板、底座板受力不利;墩台顶的纵向水平力变化不大,简支梁墩台固定支座附近的固结机构所传递的纵向力显著增加,但是连续梁上固结机构受力变化规律不明显;道岔传力部件所受纵向力均有较大或较小的降低,直尖轨尖端相对曲基本轨、长心轨尖端相对翼轨的位移也都依次减小,滑动层摩擦系数的增加对道岔转换设备和结构传力部件受力是有利的.  相似文献   

7.
为了进一步研究桥上无缝道岔受力和变形的特点,通过建立"岔-桥-墩"纵向相互作用一体化计算模型,分析道岔与桥梁的相对位置对钢轨、道岔、墩台等结构部件受力及变形的影响.经计算分析表明,随着道岔头部距连续梁桥左端梁缝距离的增大,基本轨伸缩附加力、伸缩位移、桥墩所受纵向力减小,翼轨末端间隔铁承受的纵向力增大;尖轨跟端限位器所承受的纵向力、尖轨与心轨相对于岔枕的纵向位移,并不随道岔头部距梁端的距离呈单向变化,只有当道岔头尾距离梁端在一定合适位置时,才能确保限位器受力、尖轨与心轨相对于岔枕的纵向位移最小.  相似文献   

8.
利用ANSYS建立客运专线42号无砟道岔模型,计算分析大温差条件下的道岔受力与变形特点,同时讨论了转辙器跟端结构形式对道岔受力与变形的影响。计算结果表明:通过设置限位量合适的限位器可控制道岔钢轨的温度力与纵向位移,保证转辙器正常转换;在最大年轨温差较小的地区,尖轨跟端可不设传力结构,这样有利于道岔温度力的放散;尖轨跟端设置间隔铁时,须检算间隔铁部件和基本轨的材料强度是否满足要求。  相似文献   

9.
为探讨制动工况下,坡度对长大坡道桥上无缝道岔受力与变形的影响,以国内某一坡度为17.2‰新建铁路线上的桥上无缝道岔为例建立力学分析模型,运用"等效轮轨黏着系数",建立了有砟轨道"岔-桥-墩"相互作用的一体化模型,分析不同坡度下列车制动时,钢轨纵向力、钢轨位移、墩台纵向力、心轨和尖轨位移以及间隔铁纵向力的变化。分析结果表明:坡度的增大对桥上无缝道岔的受力与变形都是不利的;侧股间隔铁的纵向力比直股间隔铁小,但是其受坡度的影响却较大;长大坡道上容易产生爬行现象,应加强无缝道岔防爬锁定,并加密防爬观测次数。  相似文献   

10.
桥墩纵向水平刚度对桥上无缝道岔的影响   总被引:1,自引:1,他引:0  
为了进一步研究桥上无缝道岔,通过计算,分析桥墩纵向水平刚度在连续梁桥上对钢轨、道岔、墩台等结构部件受力及变形的影响。本文采用ANSYS软件建立桥上无缝道岔的岔—桥—墩纵向相互作用一体化模型,并进行力学分析。研究结果是:随着连续梁桥桥墩刚度的增大,基本轨伸缩附加力减小,连续梁桥墩的纵向力增大;增大连续梁桥墩纵向水平刚度对铺设于其上的无缝道岔的受力与变形是有利的。  相似文献   

11.
以武广客运专线某特大桥铺设纵连式无砟道岔为例,将1组客运专线18号单渡线道岔、纵连式无砟轨道、桥梁、墩台视为1个系统,建立岔—板—梁—墩一体化计算模型,分析断轨或断板等偶然荷载作用位置对道岔、道床板、桥墩受力和变形的影响。分析结果表明:断轨对墩台纵向力影响较小,但对道床板受力影响较大;一线道床板折断会使另一线的道床板纵向力、墩台纵向力及固结机构纵向力大幅增加,不利于道床板、墩台及固结机构的受力;连续梁桥梁缝处道床板折断对桥墩受力极为不利,故在设计中应避免使道床板在桥上无缝道岔梁缝附近形成最大纵向力。  相似文献   

12.
在3×32 m无砟桥上以1:3的比例铺设一组客运专线18号道岔模型进行现场模拟试验,对桥上岔区内的无缝道岔、无砟轨道、桥梁及相关传力结构的受力进行模拟.采用非线性有限单元法建立桥上道岔区无砟轨道全桥一体化模型,算出相应理论值,和试验值进行比较,验证桥上岔区无砟轨道的计算模型与方法,继而指导桥上无缝道岔设计.  相似文献   

13.
采用有限元软件ANSYS,建立连续梁桥上有砟轨道无缝道岔的线-桥-墩一体化有限元模型,分析在不同工况下,设置钢轨伸缩调节器的无缝道岔受力和变形的分布规律。通过对不同工况下的基本轨纵向力、基本轨伸缩位移的计算结果进行对比分析,得出距岔前钢轨伸缩调节器60 m以上,基本上消除其对道岔纵向稳定性的影响;距岔后钢轨伸缩调节器45 m以上,其对道岔纵向稳定性的影响可控制在3 mm内;岔后设置钢轨伸缩调节器优于岔前设置等结论。  相似文献   

14.
以武广客运专线雷大特大桥铺设CRTSⅡ型纵连式无砟道岔为例,将一组客专18号渡线、CRTSⅡ型板式无砟轨道、桥梁、墩台视为一个系统,建立了岔-板-梁-墩一体化计算模型,分析了道岔、道床板、桥墩的受力和变形规律,以及道床板伸缩刚度、滑动层摩擦系数、固结机构等对各部分变形的影响。分析结果表明:基本轨伸缩附加力和纵向位移随道床板纵向伸缩刚度的减少而越大,道岔传力部件受力随道床板伸缩刚度减小而明显减小;滑动层失效不会对轨道结构的变形造成较大影响,但对墩台和固结机构受力不利;大跨桥上有必要设置固结机构,取消固结机构对基本轨位移变化及桥梁墩台受力不利。  相似文献   

15.
连续梁桥上无缝道岔温度力与变形影响因素分析   总被引:2,自引:1,他引:1  
研究目的:桥上无缝道岔是跨区间无缝线路的一项关键技术。分析各种因素对道岔和桥梁的受力与变形的影响,总结出连续梁桥上无缝道岔受力与变形规律,是关系到客运专线运营安全的重要问题。研究方法:通过建立连续梁桥上无缝道岔的有限元计算模型,利用Ansys软件对连续梁桥上无缝道岔进行力学计算并作参数影响分析。研究结果:道岔布置位置和桥墩支座布置形式对系统受力和变形影响较大;增大岔区内道床纵向阻力和扣件纵向阻力,有利于控制道岔的位移;连续梁固定墩刚度增加能有效控制道岔各主要位移,同时能减小基本轨最大附加力;轨温变化幅度对系统受力和变形的影响非常显著。研究结论:道岔应避免布置在梁的端部并且尽量让道岔导轨与梁体反向伸缩;合理设计锁定轨温能有效地改善系统受力状况。  相似文献   

16.
桥上CRTSⅡ型板式无砟轨道系统梁轨相互作用的传力体系与既有的有砟轨道和单元板式无砟轨道线路的轨道结构受力变形特征有较大的不同。利用ANSYS有限元软件对桥上CRTSⅡ型板式无砟轨道的受力变形特征进行分析,选择32 m简支梁和(48+80+48)m连续梁开展了长期温度荷载效应监测,分析桥上CRTSⅡ型板在温度荷载作用下的结构受力变形特征。结果表明,在降温和升温过程中,简支梁和连续梁梁体温度伸缩量与温度的分布规律相吻合,"两布一膜"减少了梁轨间相互作用力。说明桥上CRTSⅡ型板式无砟轨道设计原理和设计方法是合理的,为相关技术规范的制定提供了科学依据。  相似文献   

17.
为建立能客观反映桥上无砟轨道无缝道岔实际受力情况的计算分析模型,在吸收国内研究成果的基础上,基于有限单元法,建立桥上无砟轨道,无缝道岔伸缩力的计算模型.分析轨温变化幅度,扣件阻力,限位值等轨道结构参数对无缝道岔受力及变形的影响,得出桥上无砟轨道无缝道岔的受力和变形的特点,对无缝道岔的设计和养护维修有一定的指导意义.  相似文献   

18.
无缝道岔受力与变形的影响因素分析   总被引:17,自引:1,他引:16  
基于有限单元法,建立了无缝道岔纵向力与位移的计算模型,根据纵向力、线路阻力、钢轨及岔枕位移的相互关系建立平衡方程组,并采用牛顿迭代法求解。分析了轨温变化幅度、道岔号码、辙叉型式、辙跟型式、道岔群的联结方式、焊接型式、扣件阻力、道床阻力、限位器阻力、间隔铁阻力、线路爬行、铺设锁定轨温差、岔枕抗弯刚度等因素对无缝道岔受力及变形的影响。轨温变化幅度越大、线路爬行量越大、与相邻线路及道岔的铺设轨温差越大,对无缝道岔各部件的受力及变形越不利。而其它因素对无缝道岔位移及纵向力分布各有不同程度的影响,应综合分析,优化设计,才能确保无缝道岔各部件的受力及变形均在容许限度内。  相似文献   

19.
基于梁轨相互作用原理,建立桥上无缝道岔线桥墩一体化模型,对典型高架站咽喉区单渡线道岔梁+简支梁+单开道岔梁上无缝道岔的轨道受力和变形特性进行分析;对不同小阻力铺设方案、道岔梁间插入简支梁方案的轨道受力和变形特性规律进行研究.研究结果表明:钢轨伸缩附加力、钢轨制动附加力最大值出现在单渡线道岔梁梁缝处,钢轨强度、钢轨纵向位...  相似文献   

20.
桥上纵连板式无缝道岔计算软件开发与应用   总被引:1,自引:1,他引:0  
运用梁板岔互作用原理,在考虑岔、板、桥和墩台相互作用的基础上,建立适用于各种跨度简支梁、连续梁、刚构桥上的"岔—板—桥—墩"一体化计算模型,可用于对桥上纵连板式无缝道岔伸缩附加力、制动附加力、断轨力、梁轨相对位移及墩台纵向受力和变形的计算分析;为便于计算,以有限元软件ANSYS为计算平台,利用ANSYS参数化设计语言进行二次开发,编制了桥上纵连板式无缝道岔计算软件,适用于各类型桥上道岔群的设计计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号