首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李聪 《公路工程》2021,(1):18-22,80
钢-混组合梁桥体系在市政桥梁工程中近年得到了广泛应用,尤其是钢-混组合连续梁桥.在正弯矩区混凝土桥面受压,钢梁受拉,能充分发挥材料的优势;但在负弯矩区,混凝土桥面受拉会引起裂缝问题.综合使用超高性能混凝土、预应力技术、调整桥面板施工顺序、有效运用支点顶升法,提出了一种新型装置来控制钢-混组合连续梁负弯矩区拉应力和裂纹....  相似文献   

2.
为了解界面滑移效应对钢-混组合连续梁负弯矩区混凝土桥面板抗裂性的提升效果及工作机理,设计并制作采用常规剪力连接件和抗拔不抗剪连接件的钢-混组合梁各1组进行负弯矩区加载试验,分析试验梁预应力施加效率、关键部位纵向应变、梁体刚度及关键截面界面滑移情况。结果表明:采用抗拔不抗剪连接件时,梁体抗裂性更好,界面滑移效应可避免以往负弯矩区预应力通过常规剪力连接件传递到钢梁的情况发生,明显提高预应力效率;同时可使负弯矩区混凝土桥面板承受的拉应力分布更均匀,有效降低中支点截面的拉应力峰值,使后续裂缝宽度增长缓慢;加载前期2组梁体总体刚度没有明显不同,加载后期界面滑移使梁体结构刚度下降,变形增加,但变化幅度较小;抗拔不抗剪连接件对钢-混组合连续梁负弯矩区混凝土桥面板的抗裂性提升效果较好。  相似文献   

3.
简支变连续桥梁兼具简支梁和连续梁的特点,且随着施工进展而发生体系转换,而导致其正负弯矩区的配筋形式多种多样.结合4跨40 m简支变连续T梁的设计与施工,利用有限元软件建立分析模型,讨论不同配筋形式和不同的有效预应力对简支变连续梁式桥的影响,得出以下结论:对于简支变连续桥梁,应综合考虑全桥应力分布、收缩徐变导致的长期效应进行负弯矩区预应力钢束设计,合理的设计方案可以很好地限制墩顶拉应力的产生,进而避免桥面裂缝的出现,但如果出现负弯矩钢束张拉不到位的情况,墩顶接缝位置很容易出现过大的拉应力导致出现横向裂缝.  相似文献   

4.
为了解徐变对逐跨施工连续箱梁桥剪力滞效应的影响,基于能量变分法及混凝土徐变理论,建立2跨逐跨施工连续梁考虑剪力滞效应的混凝土徐变次内力计算公式,并以跨径为30m+30m的逐跨施工现浇箱梁桥为例进行计算。结果表明:对于存在施工过程体系转化的逐跨施工连续梁桥,徐变次内力增加了梁体在负弯矩区的弯矩、减小了梁体正弯矩区段的弯矩;考虑徐变效应后,截面的剪力滞效应有所减弱。算例结构中,支座负弯矩区最大剪力滞系数减小20.26%,跨中正弯矩区的剪力滞系数增加了2.1%。  相似文献   

5.
简支变连续梁桥同时具有简支梁和连续梁的特点,墩顶负弯矩区受力状态是该类桥梁要点,负弯矩区的配筋形式、有效应力、收缩徐变等参数均会对弯矩区长期性能产生影响。以某4跨40 m简支变连续T梁桥为背景,利采用MIDAS/civil软件建立全桥分析模型,讨论负弯矩区不同配筋形式、不同收缩徐变模式的影响。分析表明:不同的收缩徐变模式会产生不同的结果,收缩徐变产生的长期效应会较大影响负弯矩的应力分布,合理的配筋可有效限制简支变连续桥梁负弯矩区拉应力,设计阶段应合理设计墩顶负弯矩钢束,使其既能限制截面上缘拉应力又经济合理。  相似文献   

6.
钢-混凝土双面组合连续梁界面滑移试验研究   总被引:3,自引:1,他引:2  
钢-混凝土双面组合连续梁是一种新型的组合结构.钢与混凝土组合的上、下交界面都会产生界面滑移.对3根钢-混凝土双面组合2×2.9 m连续梁模型进行试验研究,测得了受拉混凝土裂缝扩展状况、典型截面沿梁高的应变分布和钢与混凝土界面相对滑移及滑移应变沿梁长的分布.利用有限元分析软件ANSYS建模,给出了组合梁的滑移曲线和滑移应变曲线,与实测结果对比吻合较好.双面组合梁上混凝土板与钢梁间的界面滑移分布与单面组合梁相似,但最大滑移量减少了20%多;负弯矩区的截面刚度提高了27%左右.  相似文献   

7.
对于连续组合梁桥支点负弯矩区桥面板受拉是设计的关键控制点,对于大跨径钢桁组合梁桥这一点尤为突出.同时,负弯矩区桁架下弦杆的内力突变亦应引起设计的注意.以某实际工程为依托,详细介绍了新型大跨径连续钢桁组合梁桥设计的关键技术,通过制定合理的施工工序重点解决了混凝土桥面板开裂问题;通过在下弦杆灌注混凝土形成双重组合截面重点解决了下弦杆的受压稳定问题.  相似文献   

8.
根据8根钢-混凝土叠合梁受力性能的试验研究,探讨了负弯矩区裂缝产生与发展的规律,总结了裂缝的特征.研究结果表明,负弯矩区受拉主筋的配筋率、数量;焊钉间距、高度;以及混凝土翼板的厚度和宽度是影响裂缝宽度和裂缝间距的主要因素.  相似文献   

9.
为了准确反映连续组合结构桥梁负弯矩区的受力情况,将施加预应力法、静位移法2个影响因素进行对比分析[1].通过采用有限元软件建立仿真模型进行分析,从而得出这2种方法对结合梁负弯矩区的影响差异.在算例中通过对计算结果进行分析对比,证明2种方法都能较好地减小连续梁组合结构负弯矩区的应力.  相似文献   

10.
为提高钢-混组合梁桥负弯矩区混凝土桥面板的抗裂性并简化现场施工工艺,提出新型钢-混组合梁桥负弯矩区超高性能混凝土(Ultra-high Performance Concrete,UHPC)接缝方案。以湖南省某桥为工程背景,进行1∶2缩尺模型抗弯试验研究;编制截面弯矩-曲率关系MATLAB程序,并与实测值进行对比,验证该程序可用于计算UHPC覆盖下的普通混凝土(NC)中钢筋应力;对现有NC裂缝宽度规范公式进行修正,提出考虑UHPC约束作用的组合梁负弯矩区NC最大裂缝宽度的建议公式;讨论钢-混组合梁桥负弯矩区UHPC湿接缝合理的纵桥向长度,分析UHPC层厚度及层内配筋对抗裂性能的影响。研究结果表明:新型UHPC接缝方案的抗裂性能和抗弯承载能力均满足工程要求,且接缝节点强度高于非接缝区预制部分强度;负弯矩作用下,试件沿梁高的应变较好地满足平截面假定,钢梁与混凝土板及UHPC与NC间的层间滑移量均较小;UHPC裂缝呈现“多而细”的特征,而NC裂缝呈现“少而宽”的特征,预制部分混凝土顶面最先开裂,之后UHPC-NC交界面、UHPC顶面、UHPC覆盖下的NC侧面依次出现裂缝;对于负弯矩区采用UHPC接缝的中小跨径钢-混组合连续梁桥,UHPC层的纵桥向长度宜为20%标准跨径,UHPC层厚度可根据实际工程设计要求确定,增大桥面板内钢筋直径可以提高负弯矩区混凝土的抗裂性能。  相似文献   

11.
T形梁桥腹板竖向裂缝是该类桥梁的典型病害之一,混凝土梁体不均匀收缩是引起裂缝产生的因素之一.为准确分析T梁截面内不均匀收缩效应,探索不均匀收缩效应对T梁腹板受力性能的影响,取不同影响因素对T梁进行了分析.该文以梁体各部位构件理论厚度(比表面积)及GL2000收缩预测模型为基础,引入桥面铺装和普通钢筋对截面不均匀收缩效应的影响,通过ADINA有限元软件建立计算模型,以等效温度法对截面不均匀收缩效应进行了数值计算.根据计算可知:由于T梁各部位体表比不同,导致T梁截面产生不均匀收缩应力,腹板较薄,呈受拉状态,而翼缘板与马蹄呈受压状态;桥面铺装和普通钢筋对截面不均匀收缩效应有显著影响,该效应使T梁腹板内产生可观的拉应力,对T梁腹板开裂有重要的影响.  相似文献   

12.
为了克服传统预应力混凝土主梁、钢主梁、钢-混凝土组合主梁由于材料和结构本身缺陷所引起的病害,提出了适用于(特)大跨径桥梁且无横向表面受拉接缝的钢-UHPC(Ultra-high Performance Concrete)轻型组合桥梁结构。为验证轻型组合梁用于斜拉桥的可行性,建立了空间有限元模型进行静力性能分析和疲劳应力幅计算,并制作了9个足尺条带模型试验梁,开展了静载试验研究。研究结果表明:受拉钢筋配筋率、钢筋直径、直线型纤维直径和长度对UHPC的初裂应力影响不大,而纤维带端钩能显著提高初裂应力;端钩型、直线型纤维UHPC试验梁正弯矩初裂应力分别为19.4,10.6 MPa,前者高出后者83%,负弯矩初裂应力分别为13.8,8.4 MPa,前者高出后者64%;正常使用极限状态时,端钩纤维试验梁正负弯矩初裂应力分别为华夫板下缘、上缘频遇组合拉应力的1.45倍、1.66倍;承载能力极限状态时,端钩纤维试验梁正负弯矩名义拉应力试验值分别为华夫板下缘、上缘基本组合名义拉应力的2.1倍、2.4倍;基于S-N曲线预测UHPC华夫桥面板疲劳寿命远大于200万次。  相似文献   

13.
王孝平 《城市道桥与防洪》2011,(10):122-124,11,12
由于大跨径混凝土桥梁往往采用超静定的连续梁结构,温度效应在梁体的施工过程中甚至是成桥后的梁体结构中都是不容忽视的。对大跨径混凝土连续桥梁的施工过程中和成桥后温度对混凝土结构应力和变形影响进行研究是必要的。该文从客运专线铁路工程建设的应用实际出发,应用数值仿真模拟的方法,对连续梁温度效应进行研究探讨。其成果为今后客运专线...  相似文献   

14.
通过对组合连续梁负弯矩区影响因素的建模分析,建议超高性能混凝土(UHPC)桥面板厚度与组合梁高度之比为1/5~1/9,组合梁高度与跨径的比值为1/18~1/22,钢梁与UHPC桥面板刚度之比为2~10;钢-UHPC组合连续结构梁高远低于钢-C50混凝土组合连续梁结构梁高,结构负弯矩区UHPC桥面板不开裂.  相似文献   

15.
为解决大跨钢-混组合连续梁桥负弯矩区桥面板的开裂问题,以某120 m主跨的钢-混组合连续梁桥为背景进行抗裂技术研究。采用MIDAS Civil 2020软件建立大桥空间杆系有限元模型,研究增强配筋技术、后浇成型技术、预应力技术以及抗拔不抗剪连接技术对桥面板抗裂性能的影响,并基于不同抗裂技术的工作原理和效果,提出适用于大跨钢-混组合连续梁桥负弯矩区桥面板的综合抗裂技术。结果表明:增强配筋技术可以有效控制裂缝宽度,但当配筋率超过0.015后,效果明显降低;采用后浇成型技术,调整混凝土桥面板的浇筑顺序可明显降低成桥时负弯矩区桥面板应力;张拉预应力筋可有效提升负弯矩区桥面板的预压应力水平;抗拔不抗剪连接件可显著降低活载下负弯矩区桥面板应力水平;采取优化桥面板混凝土浇筑顺序、在负弯矩区布置抗拔不抗剪连接件同时施加预应力、增加预应力锚固区的配筋率的综合抗裂技术,可明显降低负弯矩区桥面板拉应力,同时对桥梁结构的其他力学性能无明显影响。  相似文献   

16.
为缩短城市高架桥现场作业时间,利用超高性能混凝土良好的力学性能及耐久性,提出一种可整体预制、整跨吊装、快速成桥的钢-UHPC轻型组合桥梁,并针对传统钢-混凝土组合连续梁桥负弯矩区桥面板拉应力过大的情况,提出一种可与梁段整体预制的简支变连续结构。对30m跨径钢-UHPC轻型组合城市桥梁试设计,并与现有方案进行材料用量及经济性能对比;利用MIDAS/Civil软件对试设计桥梁进行荷载组合效应计算,根据计算结果以中国桥梁设计规范为基础,同时借鉴法国UHPC结构设计规程,分别基于塑性设计法和弹性设计法对钢-UHPC轻型组合连续桥梁的承载能力极限状态和正常使用极限状态进行设计计算,并对正常使用极限状态钢筋数量及裂缝宽度的关系进一步探究;建立负弯矩区精细化的局部有限元模型,根据计算结果选择拉应力较大的桥梁纵向接缝进行1∶1足尺模型试验研究。研究结果表明:试设计桥梁在预估价较低的情况下结构高跨比由1/21降低至1/28,自重减至传统钢-混凝土组合桥梁的54%;钢筋数量增加初期,UHPC板裂缝宽度迅速减小,随着钢筋数量继续增大,其对裂缝宽度控制的贡献明显减小;试设计钢-UHPC轻型组合城市桥梁具有足够的抗弯与抗剪承载力,负弯矩区整体应力水平不高,同时试验接缝抗拉强度远大于计算值,满足工程使用要求。  相似文献   

17.
应用空间有限元方法,对3跨变截面预应力钢箱-混凝土组合连续梁桥进行了建造全过程分析。着重研究了施加体外预应力对钢箱-混凝土组合连续梁桥受弯性能的影响,采用单元生成技术实现钢箱-混凝土组合连续梁桥受力全过程模拟。分析结果表明,当钢箱-混凝土组合连续梁桥跨度较大,且截面尺寸受限时,采用常规的墩顶强迫位移、桥面板施加体内预应力等措施仍不能满足中支座负弯矩区域的承载力要求。对中支座负弯矩区域桥面板施加局部体外预应力,对于改善钢箱-混凝土组合连续梁桥的受弯性能有较大的作用,能提高钢箱-混凝土组合桥梁的承载力,进而提高了跨越能力,具有更好的综合经济效益。  相似文献   

18.
连续梁桥利用支点处产生负弯矩来降低跨中的正弯矩,有效地分散了各截面的受力,由此增大了桥梁跨度.鱼腹式连续箱梁桥的边腹板呈流线形状,增加了界面抗弯、抗扭刚度的同时兼具了外形的美观性.现浇连续箱型梁桥的发展使得桥梁能够适应多种截面形式和道路线形设计,但同时增加了结构的复杂性.因此鱼腹式连续梁桥的计算需要经过精密的计算和调整以保证其安全可靠[1-3].通过一个鱼腹式连续箱梁桥实例,应用平面及空间有限元模型,对桥梁结构进行计算及调整优化,确保桥梁纵、横向以及桥面板等构件满足受力和抗裂等要求[41,为类似桥型设计提供参考.  相似文献   

19.
以珠海鸡啼门大桥跨河堤引桥为例,介绍钢板-混凝土桥组合梁桥的设计思路,探讨防止钢混组合梁负弯矩区混凝土桥面板开裂的措施。结果表明,负弯矩区选用高性能的混凝土,同时采用顶升落梁的技术,在不施加预应力的前提下,可有效控制受拉区混凝土的裂缝产生。  相似文献   

20.
中小跨径钢混组合梁在高等级公路上,已得到广泛的使用。钢混组合梁负弯矩区受力复杂,混凝土桥面板破损情况时有发生,影响桥梁正常使用。本文详述了中小跨径钢混组合梁负弯矩区的设计方法,并探讨支点位移法对改善混凝土桥面板受力的影响,为该类桥梁负弯矩区的设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号