首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究脱空区滞留水产生动水压力的分布特性,建立含脱空区混凝土路面-滞留水双向流固耦合计算模型,分析了车辆行车位置、行车速度、轴载、脱空区面积等因素对动水压力的影响。研究结果表明:动水压力沿着出口方向呈三次方减小关系;车辆行驶速度、轴载、脱空区面积是影响动水压力的3个重要因素;动水压力大小与行驶速度呈二次方增加关系,与轴载呈线性增加关系,与脱空区面积呈三次多项式增加关系。  相似文献   

2.
脱空区滞留水在车辆荷载作用下形成的动水压力,是造成水泥混凝土路面破坏较为严重的主要原因之一。为分析脱空区滞留水产生动水压力的分布特性,建立含脱空区水泥混凝土路面-滞留水双向流固耦合计算模型,并对车辆行车位置、行车速度、轴载、脱空区面积等因素对动水压力的影响进行分析。结果表明,脱空区内形成的动水压力是由车辆荷载特征和脱空区几何形态等多因素综合决定的。动水压力沿着出口方向呈三次方减小关系,其最大值发生在内部尖端处。当车轮作用在路面板边缘时,动水压力值最大,此时对路面的破坏最严重。车辆行驶速度、轴载、脱空区面积是影响动水压力的3个重要因素,动水压力大小与行驶速度呈二次方增加关系,与轴载呈线性增加关系,与脱空区面积呈三次多项式增加关系。采取交通管制措施,降低车辆行驶速度和轴载,并及时采取灌浆或注浆等修补措施,可有效减缓动水压力引起的路面结构破坏。  相似文献   

3.
为分析车辆荷载与水耦合作用下的路面板底脱空形态发展机理,建立混凝土路面-水流固耦合计算模型,对车辆行驶速度、轴载等因素对动水压力的影响进行分析,并进一步对尖端应力强度因子进行计算。结果表明:车辆驶向脱空区时,脱空区内水产生正压力,并沿着出口方向呈三次多项式减小关系;车辆驶离脱空区时,产生负压力,并沿着出口方向呈三次多项式增加关系。动水压力大小与车辆行驶速度呈二次方增加关系,与轴载呈线性增加关系。在车辆荷载与滞留水耦合作用下,当行驶速度由60km/h增加到120km/h时,应力强度因子KⅠ增加了79.2%,KⅡ增加了54.83%,KⅢ增加了1.23%,表明车辆行驶速度的提升明显加剧了混凝土路面板底脱空形态的发展,且其发展是由KⅠ、KⅡ、KⅢ综合决定的。在雨水丰富或排水不畅地区,采取交通管制措施,降低车辆行驶速度和轴载,并及时采取注浆修补措施,可有效减缓动水压力引起的路面结构破坏。  相似文献   

4.
《公路》2018,(12)
为研究水泥混凝土路面板角脱空区受力特性,应用ANSYS-CFX建立流固耦合模型,对水泥混凝土路面在车辆荷载-动水压力耦合作用下板角脱空区所受应力进行了分析。研究结果表明:在相同行车荷载作用下,相比于无水状态的脱空区,有动水压力作用下的板角脱空区裂纹尖端等效应力和最大主应力提高了约30%,而脱空区路面板板顶和板底的应力有着不同程度的减小,且板顶的主拉应力大于尖端的主压应力。考虑有水状态下材料的刚度折减时,脱空区裂纹尖端和路面板所受应力不同程度增大。  相似文献   

5.
脱空是造成水泥砼路面破坏的重要原因,在荷载作用下脱空区内的滞留水会产生动水压力对基层进行冲刷,由于脱空位置在水泥板下,利用一般的技术很难准确地对动水压力进行测试。文中利用光纤光栅技术进行小尺寸模拟试验,得出当脱空区内的滞留水接近满水状态时会产生最大动水压力、动水压力与荷载成近似线性关系、脱空面积对动水压力有较大影响的结论。  相似文献   

6.
动水压强是影响汽车雨天滑水的直接因素.通过建立纵横向花纹轮胎有限元模型,利用Fluent软件模拟不同行驶条件下轮胎所受的动水压强大小以及轮胎不同部位水流速度的分布规律,并根据数据结果回归得出了行车速度、水膜厚度和轮胎花纹深度与动水压强的关系式.结果表明:轮胎所受到的动水压强取决于水膜厚度、胎纹深度及行车速度;随着水膜厚度的增加,动水压强与车速的关系逐渐由非线性向线性转变;行车速度对动水压强的影响最为明显,仅改变轮胎花纹深度不能完全避免车辆滑水.  相似文献   

7.
孟建党 《路基工程》2009,(6):117-118
从国际平整度公式入手,通过试验,研究了路面板底动应变与路面平整度、车辆荷载的大小及车速的关系。结果表明,静载作用时,路面板底动应变与平整度没有关系,但随着车辆荷载的增大而增大;在同一车速和同一车辆荷载下,板底动应变随路面不平整度的增加而增大,且车辆荷载和车速越大,增幅越明显;在同一平整度下,水泥路面的板底动应变随车辆荷载大小和车速的增加而增大,但其增幅都有随速度的增加而降低的趋势。  相似文献   

8.
对高铁站场咽喉区深厚软土大面积堆载预压下复合地基的工程力学与变形特性开展现场试验研究,分析不同位置和深度的超孔隙水压力、沉降变形以及桩土应力等参数随时间和填土高度的变化规律。研究结果表明:1)高铁站场咽喉区复合地基内的超孔隙水压力随着荷载增加而增大,达到峰值后,随时间延长而逐渐消散,其变化略滞后于荷载的变化;超孔隙水压力的最大值出现在下卧层上部,此处附加应力也较大;在下卧层中,随着深度增加,超孔隙水压力逐渐减小。2)高铁站场咽喉区复合地基由路堤中心向外,桩应力、桩间土应力及桩土应力比总体呈减小趋势。在路堤填筑和预压中,站场咽喉区复合地基桩间土应力向桩传递,桩间土应力逐渐减少,桩顶应力逐渐增大,并逐渐趋于稳定。  相似文献   

9.
基于 FLUENT 软件轮胎滑水现象模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于FL U EN T软件模拟了轮胎滑水产生过程,并计算了不同轮胎花纹、不同车速及不同水膜厚度等条件下轮胎所受动水压强的大小。模拟分析结果表明:①复合花纹轮胎最不易发生滑水,横向花纹次之,纵向花纹最易滑水;②当水膜厚度不变时,同一轮胎所受动水压强随车速的增加而增加,且增长速度随着车速的增加而增加;③当车速不变时,同一轮胎所受动水压强随水膜厚度的增加而增加。以动水压强等于轮胎内部压强时轮胎发生滑水为判断标准,建立了轮胎临界滑水速度与水膜厚度的关系,并根据已有水膜厚度方程,推算出了临界滑水速度与降水量的关系。   相似文献   

10.
为了减少雨天交通安全隐患,保障高速公路行车安全,根据雨天高速公路实际行车状态、路面径流特点和车辆水膜相互作用探究雨天安全行车速度。首先,提出“移动水坝”概念,并分析“移动水坝”现象出现的原因和形成机理;依据水力学基本理论探究“移动水坝”现象中水膜厚度和车辆滑水限速值的变化规律;然后,利用Fluent软件仿真车辆对水流的阻挡作用,依据外侧车道大车行车间距的水压力探究连续“移动水坝”形成的条件,并确定外侧车道大车在不同行驶速度下相应的临界车头时距;最后,应用流体力学原理仿真分析车辆行驶速度和水膜厚度与轮胎受到的动水压力之间的关系,确定不同降雨强度下内侧车道小客车的滑水限速值。研究结果表明:雨天在高速公路外侧车道行驶的大车会对路面径流产生阻挡作用,出现“移动水坝”现象;“移动水坝”作用下水膜厚度较正常排水状态下增加,导致内侧车道行驶的小客车滑水限速值降低;设定试验条件下外侧车道大车间距40 m时,两车的水坝作用连续,增加大车车头时距可以减弱连续“移动水坝”作用;车辆行驶过程中轮胎受到的动水压力随水膜厚度及行驶速度的增加而增大,小客车在“移动水坝”作用下发生滑水的概率增加,根据轮胎动水压力值和滑水值确定不同降雨强度对应的临界滑水速度,可相应作为雨天高速公路小客车行驶速度限值。  相似文献   

11.
不均匀积水条件对路面行车安全的影响   总被引:1,自引:0,他引:1  
采用Fluent有限元仿真分析软件,建立轮胎-路面-流体三维有限元模型,模拟不同水膜厚度和汽车行驶速度条件下汽车轮胎所受动水压力的理论变化值,定量地分析了水膜厚度和车速对积水路面车辆侧转角的影响以及积水段路面上车辆的横向稳定性能.研究结果表明:当水膜厚度大于胎面花纹深度时,动水压强随车速的增大而增加较快,且动水高压区由轮胎中间向轮胎边缘呈近似三角分布.在无驾驶员操控情况下,当汽车左右轮分别高速(> 90 km/h)行驶在干燥和积水路面,水膜厚度介于9~12 mm时,1 s后汽车的相对侧转角差超过最佳控制角度(25.),此时汽车操纵性开始下降;2 s后汽车的相对侧转角差已超过90.,车辆发生侧滑,易产生交通事故.  相似文献   

12.
轴重和胎压对车轮动荷载的影响   总被引:1,自引:0,他引:1  
为研究重型运输车辆对路面作用的动荷载,建立车辆动力学模型,模型中将簧上质量处理为空载簧上质量与装载质量,将轮胎刚度表示为轴重和胎压的函数。研究了轴重和胎压对车辆动荷载的影响。结果发现,车轮动荷载随着轴重和胎压的增加而增加;动载系数随着胎压的增加而增加,但随着轴重的增加而减小;胎压越高,车轮动载随轴重增加速度越快;仅仅采用轴重不足以评价重载高压车辆对路面的破坏作用,在治理超载的同时也应进一步治理超压:空载车辆对路面的冲击作用较大,不能忽视空载车辆对路面的破坏作用;实际高速运行车辆对路面施加较大的附加动荷载,现有《公路沥青路面设计规范》没有考虑附加动荷载是引起路面结构发生早期破坏的原因之一。  相似文献   

13.
为了给岩溶区隧道掌子面突水灾害的预警与防治提供理论支持,针对岩溶隧道掌子面断续节理防突岩体,从断裂力学角度分析了地应力和岩溶水压力等自然营造力作用下断续裂纹的压剪起裂属性以及分支裂纹尖端应力强度因子随水压和支裂纹扩展长度的变化规律,推导了断续节理岩体发生轴向张拉贯通破坏突水的临界水压力。运用两带理论和推导的临界水压力公式,建立了基于最小安全厚度的岩溶隧道掌子面断续节理防突层失稳突水判据,并分析了掌子面前伏岩溶水压力、断续主裂纹长度、断续裂纹排距及裂纹与最大主应力夹角等对防突层最小安全厚度的影响规律。采用可考虑流固耦合效应和岩体结构特征的三维离散元数值分析方法,研究了岩溶隧道近接前方高压富水溶腔顺序开挖中掌子面防突层岩体位移场、渗流场等演化规律及其临突特征。数值模拟结果表明:随着岩溶掌子面的不断推进,掌子面防突层岩体挤出位移逐渐由单一卸荷引起向卸荷和前伏岩溶水压共同影响过渡;掌子面各测点位移及位移增加幅度均持续增大;掌子面挤出位移和掌子面水流速度在突水通道即将形成时出现激增和突升现象,具有明显的突水前兆特征。  相似文献   

14.
为了研究瞬时车辆轮载作用下桥面铺装点状透水区的孔隙水冲刷特征,本文基于计算流体力学基本理论,针对桥面铺装孔隙的饱水和非饱水情况,采用FLUENT软件从细观角度对瞬时外部水压作用下桥面铺装孔隙内部液体的压强、流速、流场以及沥青与水流接触面的粘性剪切力进行稳态和瞬态分析,进一步研究动水冲刷作用下水损坏的发展规律,结果表明:孔隙内部最大压强位于出口缝隙与壁面连接处,孔隙内最大压强与车速关系可由二次曲线拟合表示,且该位置粘性剪切应力也最大,车辆荷载的反复作用下会造成沥青膜的乳化、推移、甚至剥离,水流持续冲刷出口缝隙位置,会造成出口缝隙持续增大,非饱水模型中各计算指标随时间动态变化,最大流速、静压、动压、负压等在计算达到平衡后都超过饱和计算模型,但出现位置仍与饱水模型一致。  相似文献   

15.
《公路》2015,(11)
通过广义两相达西渗透定律,应用数值方法研究了浆液在动水环境中扩散形态、注浆压力演化规律。计算结果表明,水流抑制浆液逆水流方向与垂直水流方向的浆液扩散,促使浆液顺水流方向扩散;注浆后期浆液逆水扩散距离与扩散开度存在极大值,不随注浆时间延长而增大;注浆初期注浆压力显著增大,注浆后期注浆压力基本保持稳定且注浆压力与注浆速度、浆液黏度、水头压力呈近似线性关系。  相似文献   

16.
唧泥脱空是最常见的脱空类型,而水是形成唧泥的首要条件。该文对机场道面形成唧泥冲刷作用的关键参数"动水压力"进行理论分析,为唧泥脱空的相关问题作进一步研究提供基础。该项研究以Elmer C.Hansen公路实测脱空区动水压力数据为基础,并全面考虑机场道面与公路路面的区别。通过对荷载大小、荷载通行速度及飞机升力影响等三方面的修正,最终得到机场脱空区内最大动水压力差可达90 kN。  相似文献   

17.
岩溶地区地质条件复杂,在隧道修建中存在溶洞突涌水安全隐患,而顶部溶洞带来的灾害性更加明显,溶洞水压是其重要影响因素。针对隧道顶部溶洞,建立数值模型,将溶洞水压作为工况因素,分析围岩中的孔隙水压力变化规律,揭示隧道开挖过程中突涌水通道的分布情况。基于数值模型中单元孔隙水压力突变最大值判断方法,溶洞与掌子面围岩达到塑性状态后,监测两者之间的单元孔隙水压力随开挖步变化速率,找出每一行单元中的最大值,从而确定不同溶洞水压下的突水通道及安全厚度。研究表明,随着顶部溶洞水压增大,突水通道距离溶洞底部由近及远,而安全厚度也随之增大。  相似文献   

18.
为研究宏观构造对潮湿沥青路面抗滑性能的影响,引入宏观形貌概率正态分布模型,构建潮湿路面-车轮相互作用下的动水压力解析方程及数值解算方法;并将分布模型与现行的路面抗滑指标MTD相联系。在此基础上,以黏性动水压力为基本指标,分析潮湿工况下, AC-13、SMA-13及OGFC-13这3类路型的路面抗滑性能。计算表明,潮湿路面薄层水膜条件下的黏性滑水不完全等同于积水路面条件下的惯性滑水,其胎下动水压分布沿行驶方向显现出非线性变化的特征,且在胎面临近完全接触区边界附近达到峰值后迅速衰减;同时,黏性滑水产生的承载力随行驶速度呈线性增长。另一方面,黏性滑水产生的动水压力与水膜厚度和路面构造深度的比值相关:当路面水膜厚度h在0~3σ之间,动水压力明显随水膜增厚而减小、随构造深度的增加而减小;当路面水膜厚度大于3σ或构造深度足够大时,水膜厚度和构造深度的影响将随之减弱。  相似文献   

19.
为研究重载铁路路桥过渡段在轴重增大、速度提高情况下的变形和动力响应,本文采用有限元数值计算方法,系统总结了重载铁路路桥过渡段路基纵向动力响应规律。分析表明:轴重的变化是影响动应力峰值的决定性因素;列车上桥时,动位移在距桥台0~25m范围内比较集中,变化明显,在该范围内动位移先增大,后减小,在15m左右位置动位移达到最大值。25t轴重、速度100km/h时,桥两侧点的加速度峰值均显著增加;尤其速度提高到120km/h后,影响更甚;上桥侧过渡段路基表面动位移和加速度峰值变化受轴重等因素的影响较下桥侧明显。  相似文献   

20.
为探索车辆荷载作用下路基内动应力的分布及衰减规律,依托贵州惠罗高速公路项目,开展了不同载重和不同车速工况下的动应力现场测试试验。现场测试数据表明:影响路基动应力大小的参数主要有载重、路面平整度、路面结构等。在平整路面下,行车速度对动应力影响不大;而在不平整路面下,动应力将随行车速度的增大而增大;动应力峰值随载重的增加而显著增大,并呈现良好的线性正相关关系;同一条件下,动应力沿深度方向呈幂函数快速衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号