首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过模型试验研究路堤重复加卸载下坡脚处顶部约束双排倾斜摩擦桩变位规律,为坡脚处抗滑桩优化设计提供依据。结果表明:①加载过程中,顶部约束后排摩擦倾斜桩桩身侧移随深度变化曲线与纵轴之间呈"上宽下窄"的倒梯形,破坏模式为"平移+绕桩底转动"。对于0~9°负斜桩,加载过程中桩身侧移随倾斜角增大而减小。首次加载过程中,桩身侧移随加载增加而增加。再次加载过程中,首次极限压力范围内桩身侧移不敏感,超过首次极限压力时,侧移随加载增加而增加;加载到一定压力下,侧移增速减小;②相同荷载作用下,负斜桩顶侧移小于竖直桩,与负斜桩主动承受桩顶水平荷载作用下桩顶水平位移大于直桩相反。首次加载时,各倾斜桩顶侧移均随荷载增大而增大,加载到一定值时,竖直桩顶侧移突增、率先屈服,随后趋于稳定。再次加载时,桩顶侧移随荷载增大而缓慢增加,荷载超过前一次加载的最大荷载时,倾斜桩顶侧移突增,地基侧向加载与桩顶侧移曲线将回到前次加载曲线的延长线,即具有记忆效应,随后屈服、趋于稳定;③卸载过程中,桩身各截面侧移不敏感,仅仅卸载到最后1~2级荷载时才有明显减小。工程中,建议将坡脚抗滑桩尽量斜向道路中线设置一定倾斜角度,以减少桩顶桩身侧移,提高抗滑移效果。  相似文献   

2.
桩体复合地基在软基处理中大量采用,桩体缺陷难以避免,临近设置桩可控制该复合地基水平位移。设计模型试验,研究含缺陷桩复合地基重复加卸载曲线特征与临近嵌岩桩、摩擦桩及其桩顶自由或者通过连梁连接时顶部侧移规律,以指导临近桩的设计。结果表明:(1)含缺陷桩复合地基的加卸载曲线特征与一般地基相似,加载曲线呈上凸形,卸载曲线呈下凹形;(2)随着压力增加,临近桩顶部侧移逐渐增大,增长率随重复加载次数增加而减小。首次加载时,侧移增长经历快速增长、缓慢增长、快速增长3个阶段,第2、3、4次加载时,侧移经历平缓增长、快速增长两个阶段。卸载曲线在最后1~2级荷载处具有拐点,拐点前产生塑性变形,拐点后开始出现弹性变形。桩顶约束条件对回弹变形影响小;(3)相比摩擦桩,嵌岩桩对重复加卸载不敏感,桩顶位移小,说明临近嵌岩桩比摩擦桩的约束效果好。相比桩顶自由单桩,桩顶连梁连接的桩受压产生较大侧移,但对重复加载不敏感,说明桩顶连接连梁的桩整体约束效果好。实际工程中,复合地基内缺陷桩很多时,建议在侧面设置顶部通过连梁连接的嵌岩桩控制含缺陷桩复合地基的水平移动。  相似文献   

3.
深厚软土地基上修建高速公路(铁路),路堤荷载传递至坡脚将产生水平荷载,路基可能产生滑移破坏。为减少该水平荷载产生的不利影响,提出在坡脚处设置斜-直双排桩。采用模型试验研究均质砂土地基侧向加载下,9°斜桩长度为直桩长度的0,0.75,1,1.25倍时,斜-直双排桩桩侧土压力、桩身弯矩及直桩水平位移,揭示路堤荷载下坡脚斜桩长度对斜-直双排桩变位规律与破坏模式的影响规律。结果表明:单直桩整体侧移呈"平移+绕桩底转动"模式,侧移峰值在桩顶,土压力、弯矩峰值在桩身中部;斜-直桩土压力峰值出现在桩身中下部且内侧直桩土压力大于外侧斜桩,直桩侧移峰值出现在桩身中部,弯矩峰值出现在内侧直桩中部和外侧斜桩顶部,内侧直桩弯矩峰值大于外侧斜桩弯矩峰值;随着桩长比增大,斜-直桩土压力峰值缓慢增大,内侧直桩产生的侧移峰值缓慢减少,内侧直桩弯矩峰值缓慢增大、外侧斜桩弯矩峰值快速增大。路堤荷载作用下,内侧直桩的中部、外侧斜桩的顶部易发生弯曲破坏,直桩先于斜桩破坏。工程中,为了提高坡脚抗滑移能力,建议设置斜-直双排桩,并增加外侧斜桩的长度,使内侧直桩与外侧斜桩的抗弯刚度比大于2。  相似文献   

4.
施工不当或者侧向堆载、开挖常常导致桩身倾斜,扶正难度较大,且目前对倾斜桩复合地基的变形性状缺乏相关研究,其可能导致新的工程病害,基于此,设计模型箱和加载装置,对竖向重复加卸载下倾斜桩复合地基变形规律开展试验研究。结果表明:循环加载过程中,倾斜桩顶及其复合地基沉降和侧移均随荷载增大而增大,其增长率随荷载增大而增大、随加载次数增大而减小;卸载过程中,卸载初期的倾斜桩顶及其复合地基沉降和侧移变化不明显,最后1~2级低压力时才出现弹性变形;相同荷载作用下,桩顶沉降量随倾斜角增加而增大,倾斜桩存在“沉降临界倾斜角”(试验前3次加卸载循环其值为6°),随土体密实度提高而降低,倾斜角小于该临界值时,倾斜对桩的沉降影响不大,反之,桩顶沉降量随倾斜角增加而快速增大;倾斜桩存在“侧移临界倾斜角”(试验为9°),为侧移峰值对应倾斜角;倾斜角度小于该临界值时,桩顶侧移随倾斜角增大而增大,反之,桩顶侧移随倾斜角增大而减小,“侧移临界倾斜角”大于“沉降临界倾斜角”;相同荷载作用下,倾斜桩复合地基的沉降大于倾斜桩沉降,而侧移比倾斜角6°桩大,比倾斜角12°桩小,桩身倾斜时,倾斜桩与复合地基的侧移量远比其沉降量小,但是侧移比沉降更为敏感。工程中,应尽量减少桩身倾斜,降低倾斜桩及其复合地基的沉降量和侧移量。  相似文献   

5.
侧向约束桩桩身弯矩问题比较复杂,该文采用室内模型试验研究含桩地基重复加卸载过程中侧向约束桩桩身弯矩特性,结果表明:1含桩地基重复加、卸载过程中,侧向约束桩桩身弯矩沿深度先增大、后减小,有1个峰值(首次加载有2个峰值),峰值出现在0.37倍埋置桩长附近;2桩身弯矩随含桩地基加、卸载而相应增、减。重复加、卸载到相同荷载时,桩身弯矩随加、卸载次数增加而减小;3首次加载达到P-s曲线拐点荷载时,弯矩增长缓慢,第2~4次加载到P-s曲线拐点荷载的前级荷载时,弯矩增长缓慢。说明加载到一定程度时,桩间土作用恒定,桩体作用逐渐发挥,桩体抑制了侧向约束桩弯矩的增长。侧向约束桩弯矩受含桩地基桩间土控制。试验结果为含桩地基侧向约束桩的设计提供了依据。  相似文献   

6.
施工不当或者侧向堆载、开挖常常导致桩身倾斜,扶正难度较大,且目前对倾斜桩复合地基的变形性状缺乏相关研究,其可能导致新的工程病害,基于此,设计模型箱和加载装置,对竖向重复加卸载下倾斜桩复合地基变形规律开展试验研究。结果表明:循环加载过程中,倾斜桩顶及其复合地基沉降和侧移均随荷载增大而增大,其增长率随荷载增大而增大、随加载次数增大而减小;卸载过程中,卸载初期的倾斜桩顶及其复合地基沉降和侧移变化不明显,最后1~2级低压力时才出现弹性变形;相同荷载作用下,桩顶沉降量随倾斜角增加而增大,倾斜桩存在"沉降临界倾斜角"(试验前3次加卸载循环其值为6°),随土体密实度提高而降低,倾斜角小于该临界值时,倾斜对桩的沉降影响不大,反之,桩顶沉降量随倾斜角增加而快速增大;倾斜桩存在"侧移临界倾斜角"(试验为9°),为侧移峰值对应倾斜角;倾斜角度小于该临界值时,桩顶侧移随倾斜角增大而增大,反之,桩顶侧移随倾斜角增大而减小,"侧移临界倾斜角"大于"沉降临界倾斜角";相同荷载作用下,倾斜桩复合地基的沉降大于倾斜桩沉降,而侧移比倾斜角6°桩大,比倾斜角12°桩小,桩身倾斜时,倾斜桩与复合地基的侧移量远比其沉降量小,但是侧移比沉降更为敏感。工程中,应尽量减少桩身倾斜,降低倾斜桩及其复合地基的沉降量和侧移量。  相似文献   

7.
倾斜软基上修建高速公路(铁路)时,地基容易出现差异沉降、滑移甚至垮塌。提出坡脚斜直桩组合结构+桩体复合地基加固倾斜软基,采用模型试验,对比测试倾斜软基上桩体复合地基受压时,坡脚处插入硬层的双单桩、双直桩组合结构以及斜直桩组合结构的桩侧土压力、桩身应变和外侧桩水平位移,揭示倾斜软基上插入硬层的斜直桩组合结构单侧受力变形机制与破坏模式,为倾斜软基上斜直桩组合结构的设计提供试验依据。结果表明:①内、外侧桩在桩身中部偏上位置呈现桩侧土压力峰值;外侧桩倾斜度增大,其桩侧土压力峰值快速减小,内侧桩桩侧土压力大于外侧桩;②外侧桩在桩身中部偏上位置呈现侧移峰值,桩顶嵌固连梁外侧桩的桩身水平位移及其峰值均随倾斜度增大而减小,总是小于桩顶自由的外侧桩,峰值位置也较低;③桩身中上部出现弯矩峰值,外侧桩弯矩峰值位置略低,外侧桩倾斜度增大导致内侧桩弯矩增大、外侧桩弯矩减小;④单侧受载时,斜直桩发生水平位移,随后弯曲变形,内侧桩率先破坏、外侧桩后破坏,具有关联性,而双直桩的破坏荷载介于斜直桩的内侧桩和外侧桩之间。加大内侧桩的抗弯刚度和外侧桩的倾斜度将大幅度提高斜直桩组合结构的整体稳定性。工程中,建议外侧桩倾斜度为10%~20%,并根据路堤高度(荷载)选择内侧桩与外侧桩刚度之比大于2。  相似文献   

8.
上覆硬壳层缺失的深厚软土地基中基桩由于侧向约束薄弱和受压杆稳定影响存在失稳风险。桩帽连梁结构增加了地基承载力和稳定性,已逐步应用于实际工程中,但目前对于桩帽连梁支撑式路堤荷载传递机理和土拱效应相关的研究较少。通过ABAQUS大型有限元计算软件建立不同填土高度下桩帽连梁支撑式路堤三维简化模型,对桩帽连梁支撑式路堤的沉降变形特性、应力分布规律以及荷载传递机理等进行分析。结果表明,高填路堤桩帽顶、地梁顶以及桩间土顶之间的填土均存在差异沉降,桩间土与桩帽地梁之间以及地梁与桩帽之间均会形成土拱,最终填土荷载主要由桩帽承担。路堤填土竖向应力沿深度存在峰值点,峰值点以上的路堤应力分布与填土自重规律基本一致,峰值点以下的路堤应力沿深度递减,且峰值点高度略低于实际的等沉面高度。  相似文献   

9.
特定倾斜方向的倾斜桩比竖直桩具有更好的水平承载性能,但其工作机制尚不十分清楚,相应设计标准没有形成,制约了倾斜桩水平承载能力和稳定性能的应用和发挥。该文从模型试验、数值模拟和理论分析方面,综合分析侧向卸载、侧向加载条件下被动倾斜桩及其组合体的桩土相互作用规律、水平移动与承载机制,并提出研究前景,以期推动被动倾斜桩及其组合体的深入研究和工程应用,有望根治土体滑移。  相似文献   

10.
为了研究车辆荷载作用下炭质泥岩路堤动力变形特征,运用FLAC3D模拟实际工况,在不连续半正弦波荷载作用下,考虑单轮组加载,分析路堤的动力响应以及不同工况下的变形特征。结果表明:炭质泥岩路堤在单次或重复车辆荷载作用下,均表现出明显的弹塑性变形特点;路堤横向位移在加载区域两侧向两边发展,在坡脚处达到最大值,路堤竖向位移在加载区域附近变形较大,且路堤变形以竖向位移为主,主要工作区范围为路床顶面以下3~6m;车速越大,路堤变形越小;车载越大,荷载影响深度越深,路堤变形越显著;比较满车道布载方式和单车道居中布载方式,前一工况时路堤的竖向变形和工作区范围更为显著。  相似文献   

11.
鉴于高填方路堤对地基承载力要求高且在填筑过程中易发生大规模沉降,采用FLAC3D对高路堤施工期的路基中心处竖向沉降和路基坡脚处水平侧向位移进行模拟,分析了影响高路堤施工期变形的主要因素。结果表明,路堤中心处沉降量、坡脚侧向位移都随路堤土高度和重度的增加而增大;但随着路堤土弹性模量的增大,路堤中心处沉降量逐渐减小,而坡脚侧向位移逐渐增大,且二者随模量变化的趋势并不显著。  相似文献   

12.
为了深入研究侧向受荷桩的承载特性及抵抗变形的能力,结合实际工程中天然土体的成层特性,开展了侧向受荷桩的室内模型试验,研究了不同粒径土层厚度及相对密实度对桩土相互动态耦合作用的影响,并结合PIV图像技术,分析了桩周土体位移场的发展趋势,为水平受荷桩的设计提供了理论依据。试验结果表明:①土体刚度与较小粒径土层的厚度呈正相关关系,而较大粒径砂土层厚的增加则对整个桩土体系的刚度产生了弱化作用;②当桩顶位移相同时,随着较小粒径砂土层厚的增大以及相对密实度的提高,土抗力随之增大,在深度为5~6倍桩径范围内达到最大值,且相对密实度对土抗力的影响更大;③水平受荷桩的桩前和桩后砂土表面均形成了一个纺锤形的位移影响区域,且此区域与水平加载方向的最大夹角随土层条件和相对密实度的变化很小,其值均为45°左右;④在相同的桩顶荷载下,砂土相对密实度的增大约束了桩体的运动趋势,使得桩体的水平位移减小,例如,当桩顶荷载均为30 N,密实度为0.5时桩前砂土的最大位移影响范围比密实度为0.3时普遍减少了约1倍桩径的距离;⑤桩身弯矩值随着较小粒径土层厚度的增大而增大,最大弯矩约出现在0.15 m深度(5倍桩径)处;随着砂土相对密实度的提高,桩身弯矩也逐渐增大,最大弯矩所在的位置逐渐上移。  相似文献   

13.
宋剑  张蛟  成进科  尹培杰  晏长根 《公路》2022,(4):118-124
通过室内模型试验研究了加载过程中桥梁桩基与抗滑桩桩顶位移、桩身应变、桥梁桩基前后土压力、抗滑桩桩前土压力的变化,得到两者的受力变形特性,并确定了模型试验中桥梁桩基和抗滑桩的破坏模式。研究表明,两者桩身弯矩分布均为抛物线形式分布,抗滑桩与桥梁桩基最大弯矩均位于岩土交界面与滑动面之间;两者桩基破坏面也均位于岩土交界面与滑动面之间;抗滑桩与桥梁桩基滑动面以上段桩前土压力分布均为倒三角形分布形态,在滑动面处土压力基本为0,桥桩桩后土压力分布成“S”形分布,压力峰值位于滑动面下方及桩顶处;抗滑桩先于桥梁桩基发生破坏,下滑力主要由抗滑桩承担,随着下滑力的增加,抗滑桩承担荷载比例增大;抗滑桩与桥梁桩基桩顶水平位移变化规律基本保持一致,在加载初期桥梁桩顶水平位移变化幅度小,随着荷载的增加其变化幅度逐渐增大,两桩之间相互作用越加显著。  相似文献   

14.
为考察台后路堤荷载导致的地基软弱下卧层压缩和水平移动作用下的桥台桩基受力性状,建立了桥台桩基的三维有限元模型,验证了其合理性,并通过设置桩-土接触单元分析了桥头路基填筑对桥台桩基受力性状的影响.结果表明:由于桩的“遮拦效应”,前排桩桩-土“绕流”现象较后排桩更为明显;同时,桩的阻拦作用使桩周土体位移值较自由土场预测值偏小;桩-土相对位移较大时桩平均侧向压力与桩-土相对位移呈非线性关系;每级荷载下最大桩侧土压力约为路堤荷载的74%;路堤荷载大小与桩身最大弯矩值的关系与基桩所处位置有关,并非简单的双折线关系;在影响桩身弯矩因素中,软土层力学性质对桩身弯矩影响较桩身模量更为明显;桩在受轴向力和侧向力耦合作用下,桩基础的承载力会有所提高,但不明显.  相似文献   

15.
李世昌  余飞  郭建华 《公路》2021,(1):37-43
摘 要:为保证地基稳定,分5级填筑软土地基路堤.数值模拟结果表明,每级路堤荷载下软土地基最大地表沉降位移和最大侧向位移分别发生在路堤中心处地基表面和路堤坡脚下某一深度.在路堤下布置剖面沉降管,在路堤坡脚处布置水平测斜仪,获取软土地基变形.结合现场监测数据,运用双曲线沉降预测法求得路堤填筑各级沉降期的最优时长,并计算路堤...  相似文献   

16.
为研究水平受荷斜桩的承载变形性状,采用有限元软件模拟了斜桩在水平荷载作用下的性状并与直桩进行了比较,分析了桩身倾角、桩顶竖向荷载对斜桩桩身水平位移、桩身弯矩及剪力的影响,研究了斜桩与桩侧土之间的挤压、剪切相互作用,对水平受荷斜桩有效桩长的影响因素进行了探讨。结果表明:正斜桩的水平承载力比直桩大,负斜桩的水平承载力比直桩小;桩身倾角对斜桩水平位移、桩身弯矩及剪力有较大的影响;正斜桩桩顶水平位移小于直桩,负斜桩桩顶水平位移大于直桩,桩身倾角越大,斜桩与直桩桩顶水平位移差异越大;正斜桩、负斜桩的桩身弯矩均小于直桩,桩身倾角越大,正斜桩桩身弯矩越小,负斜桩桩身弯矩越大;正斜桩及负斜桩桩身剪力均小于直桩,正斜桩桩身剪力小于负斜桩桩身剪力;桩顶竖向荷载对正斜桩、负斜桩水平承载力的影响不同,竖向荷载提高了负斜桩的水平承载力,削弱了正斜桩的水平承载力;水平受荷斜桩与桩侧土之间的相互作用以挤压为主,剪切作用较弱;水平受荷斜桩存在一个有效桩长,对于相同的土层,无论是正斜桩、负斜桩,其有效桩长基本相同;桩侧上部土体剪切模量增大对减小有效桩长有显著的影响,下部土体剪切模量变化对有效桩长影响不大。  相似文献   

17.
路堤下水泥土桩复合地基荷载传递规律研究   总被引:1,自引:0,他引:1  
考虑到路堤荷载下水泥土桩复合地基变形特性,假设了桩间土竖向变形模式,在此基础上,根据弹性力学基本原理,推导得到了水泥土桩复合地基桩身轴力与桩侧摩阻力的解析表达式。理论分析和有限元计算表明,路堤下复合地基桩身出现中性点,中性点以上产生负摩阻力;桩侧正、负摩阻力以及桩身轴力随桩体模量增加或土体模量减小而增加,随桩顶荷载增加而增加。理论计算结果与有限元计算结果比较一致。推导的桩身轴力与桩侧摩阻力解析表达式可为工程应用参考。  相似文献   

18.
微型桩-承台-挡墙组合结构作为一种新型支挡结构,其受力变形特性研究尚不完善。文中结合某临水路堤支挡工程,采用ABAQUS有限元软件建立微型桩-承台-衡重式挡墙加固路堤三维数值模型,模拟该结构各组成部分受力与变形特性,分析不同桩间距、桩排距和填土内摩擦角对微型桩内力与变位的影响。结果表明,墙体整体向外侧移动并向内侧轻微转动,墙底位移大于墙顶位移,土体产生的水平应力主要集中在衡重台附近;承台与微型桩连接处产生明显应力集中现象;微型桩水平位移沿桩身逐渐减小,桩体表现出主动防护作用,在桩顶出现一定范围轴向拉力分布,桩身弯矩呈勺子形,峰值出现在土层分界面处,桩身剪力方向与滑坡方向相同,上部荷载的影响使滑面以上桩身剪力变化很小;合理的桩间距为5~6倍桩径,排间距在5倍桩径时桩身受力情况最好,填土内摩擦角超过30°时桩身受力与变形变化不明显。  相似文献   

19.
采用有限元软件建立碎石桩处理软土路基计算模型,深入研究不同碎石桩埋深、碎石桩间距、地基弹性模量及路堤填方高度对路堤变形的影响,并针对路堤位移和应力变化规律进行探讨,分析结果表明:适宜的增大碎石桩埋深可以有效减小路堤变形;增大碎石桩间距会导致路堤较大的应力和位移变形;增大地基弹性模量可以有效降低路堤最大竖直位移,但路堤水平位移和应力会有所增大;增大路提填方高度会导致路堤发生较大的位移变形和应力变形;研究结果可为碎石桩处理软基工程提供理论参考。  相似文献   

20.
《公路》2015,(8)
为了研究扩孔微型桩的受力性能,对5根具有不同扩孔参数的微型桩进行了室内足尺侧向受荷试验,分析了扩孔参数对微型桩桩身弯矩和侧向位移的影响得出,明显的桩身弯矩变化主要发生在第一个反弯点20 D(桩径)之前,且最大弯矩值出现在埋深6 D处;不同扩孔参数对桩身弯矩影响不明显;桩身侧向位移随着埋深的增加呈逐渐减小的趋势,且水平位移主要发生在埋深10 D内;扩孔后,微型桩在侧向荷载作用下更易变形。扩孔内填料越松散,扩孔孔径越大,桩身侧向位移越大。在埋深3 D~4.5 D扩孔深度内,扩孔深度对桩身侧向位移影响不明显。研究所得结论为研究微型桩的扩孔问题打下基础,并为整体式桥台桥梁支承桩的扩孔技术提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号