首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究钢桥塔锚固区钢锚箱结构的受力特性及其传力机理,以天津市蓟运河大桥(钢箱梁独塔斜拉桥)为工程背景,基于有限元软件ANSYS 14.0,采用等效板厚法,建立了2个(S1号索和S13号索)钢锚箱结构的全实体单元有限元模型,对其应力分布、索力传递路径以及焊缝传力机理进行了分析。结果表明:钢锚箱各板件Von Mises应力均小于200 MPa,满足规范要求;由承压板、承剪板和加劲板共同构成的闭口箱形截面钢锚箱可以顺畅地传递斜拉索索力;S1号索、S13号索钢锚箱模型的钢锚箱分别表现出梁式和柱式锚箱的受力特性;柱式锚箱承剪板长度选取不宜过长,该桥S13号索钢锚箱承剪板长度最终取为1.4m。  相似文献   

2.
上海长江大桥组合索塔锚固区受力数值计算   总被引:6,自引:2,他引:6  
结合上海长江大桥具体工程,采用空间有限元模型详细模拟索塔中各部分构件,考虑钢锚箱与混凝土间的相互作用,计算索塔中钢锚箱板件的应力和混凝土的应力,分析斜拉索索力在索塔锚固区的传递分配关系。  相似文献   

3.
针对斜拉桥传统钢锚箱构造复杂、吊装重量大,钢锚梁结构需设置环向预应力、索导管定位复杂等问题,研究一种新型钢锚箱锚固结构(主要由混凝土桥塔、U形钢锚固件和钢拉板组成,塔壁不设环向预应力)的适用性。以某大型斜拉桥(采用传统钢锚梁+环向预应力锚固形式)为背景,提出这种新型钢锚箱索塔锚固结构设计方案,建立锚固区节段有限元模型,研究其受力性能。结果表明:新型钢锚箱索塔锚固结构设计方案中,斜拉索水平力基本由新型钢锚箱承担,取消塔壁环向预应力,按钢筋混凝土受拉构件由最小配筋率下裂缝宽度控制塔壁设计,塔壁设计凹形部位便于钢结构锚固;在正常使用工况和断索工况下,新型钢锚箱索塔锚固区受力合理,塔壁应力、裂缝宽度等指标均满足规范要求。  相似文献   

4.
任飞 《上海公路》2020,(3):43-47
斜拉桥钢塔锚固区是连接斜拉索和桥塔的关键部位,该部位采用钢锚管结构,可以把巨大的斜拉索索力有效传递到桥塔中。现以某斜拉桥为背景,建立锚管式钢索塔锚固区空间板壳有限元模型,并对其进行分析研究。结果表明,锚固区内板件应力分布不均匀,承压板以及钢套管近锚头端的应力集中程度高,但高应力水平区域范围较小,应力扩散较快;钢套管与加劲板之间的焊缝应力需要计入桥塔整体变形的影响;塔壁承受面外荷载,但总体应力水平较低。  相似文献   

5.
张煜 《城市道桥与防洪》2020,(4):65-67,I0006
复合式锚固结构用于钢塔斜拉桥可以简化塔内构造布置,有效传递斜拉索索力。复合式锚固系统主要由钢锚箱和环向加劲组成,斜拉索水平分力由钢锚箱承担,不平衡水平力由环向加劲承担,竖向分力由加强加劲肋与桥塔承担。通过对复合式锚固结构的有限元分析,总结了该锚固结构的受力性能和特点,为同类型斜拉桥塔上锚固结构的设计提供参考。  相似文献   

6.
常泰长江大桥主航道桥为(142+490+1 176+490+142) m公铁合建双塔斜拉桥,采用钢-混混合结构空间钻石型桥塔,索塔锚固区采用钢箱-核芯混凝土组合结构,S4~S39号斜拉索锚固于核芯混凝土上。为实现索塔锚固区斜拉索竖向分力的有效传递,提出方案A(钢齿块+剪力钉)、方案B[钢齿块(加肋)+剪力钉]、方案C(混凝土齿块)、方案D(钢锚箱+PBL剪力键)以及方案E(钢锚箱+承压板+剪力钉)共5种索塔锚固构造方案,从结构受力及施工工艺对5种方案进行比选,并采用模型试验及有限元分析对所选锚固构造方案进行验证。结果表明:方案E剪力钉受力分布均匀,剪力大小适中,且施工便捷,对于S7~S39号斜拉索,推荐采用方案E;对于斜拉索竖向角度较大的S4~S6号斜拉索,钢锚箱在构造和张拉空间上存在冲突,推荐采用方案C。方案E模型试验和有限元分析表明:结构应力、剪力钉受力及钢锚箱构造各板件应力均有安全储备,锚固构造处于线弹性状态,能满足规范及使用要求。  相似文献   

7.
鳌江特大桥主桥为主跨320m的双塔双索面钢-混组合梁斜拉桥,斜拉索在主梁上采用钢锚箱锚固。为研究索梁锚固区的应力分布,防止应力集中,改善锚固区受力,采用ANSYS软件建立钢锚箱及其对应的主梁边箱节段锚固区的三维实体有限元模型,分析锚固区的受力特性,并分析锚固区关键板件厚度及斜拉索索面倾角调整的2步优化方法。结果表明:锚箱盖板与箱梁腹板衔接处存在较高的应力集中区,受力不利;调整锚固区关键板件厚度可有效降低锚固区的应力水平,使钢锚箱和箱梁腹板受力更均衡、合理;调整拉索索面倾角可使锚固区受力有一定改善,但效果有限,且会影响到桥塔和主梁的总体布置。该桥实际施工采取调整锚固区关键板件厚度的优化方法,改善了钢锚箱的应力集中现象,钢锚箱受力合理,满足设计要求。  相似文献   

8.
青岛市墨水河大桥主桥为2×90 m单塔中央双索面斜拉桥。主梁采用分体式箱形截面钢主梁,斜拉索与钢箱梁内边腹板之间通过钢锚箱连接,索梁锚固区的传力途径和受力情况较复杂。利用有限元软件midas FEA对索力最大的索梁锚固区及附近梁段进行板壳单元有限元分析,对索力最大的钢锚箱及局部腹板进行实体单元有限元分析。结果表明,对于中央索面分体式钢箱梁斜拉桥,顶底板等效应力峰值出现在联系横梁跨中;联系横梁腹板所对应的箱室内横隔板比拉索横隔板的应力水平高;通过设置腹板局部补强板,锚固区腹板变形和应力均可满足受力要求;钢锚箱锚固于内边腹板外侧,斜拉索张拉施工和后期养护均较方便。  相似文献   

9.
大跨径斜拉桥钢箱梁索梁锚固区为空间受力构件,板件受力相对复杂。该文选取主梁锚固区为分析对象,建立局部有限元模型,研究了成桥恒载+最不利活载工况的最大索力作用下主梁锚固区钢锚箱的应力分布规律,并通过优化钢锚箱抗剪板尺寸,改善了结构应力分布,同时降低了应力集中效应,可为同类型工程提供借鉴。  相似文献   

10.
大跨度斜拉桥混凝土索塔钢锚箱空间有限元分析研究   总被引:4,自引:0,他引:4  
结合国内某连岛工程大跨度斜拉桥,介绍了其索塔钢锚箱的构造特点,同时采用空间有限元方法对其混凝土索塔钢锚箱节段模型进行仿真计算分析以及结构受力分析,指出了索塔锚固区的应力分布特点。结果表明:钢锚箱虽然板件较多,但整体性能好,索力传递流畅,该结构部分区域存在一定程度的应力集中,在1.7倍设计荷载作用下,结构的承载力满足设计要求,并具有一定的安全储备。最后给出仿真计算的主要成果,研究结果对于斜拉桥索塔锚固区设计具有一定的参考作用。  相似文献   

11.
芙蓉江大桥为主跨170m的地锚式独斜塔斜拉桥,斜拉索交叉锚固于桥塔上塔柱"工"字形截面两侧的锚块上。为了解该桥索塔锚固区的应力分布,选取塔顶5对斜拉索的锚固区段为对象,设计制作1∶4的缩尺模型进行静载试验,并采用MIDAS FEA软件建立索塔锚固区有限元模型,分析锚固区塔壁和锚块的应力分布。结果表明:在斜拉索索力及恒载作用下,桥塔地锚箱侧塔壁处于受压状态,主跨侧塔壁处于受拉状态,塔壁最大压应力为4.2 MPa,最大拉应力为1.68MPa,均出现在工字形翼缘;斜拉索索力使锚块处于竖向受压、横向受拉的复杂应力状态;实桥桥塔应力的实测值与试验模型实测值和理论值均吻合较好。  相似文献   

12.
荆岳长江公路大桥主桥为主跨816m的双塔不对称混合梁斜拉桥,在成桥状态下,索塔锚固采用两端固定的钢锚梁结构体系。为研究钢锚梁平衡斜拉索索力的作用,验证超静定结构体系钢锚梁的合理性,采用ANSYS软件建立索塔锚固区有限元模型,分析钢锚梁施工过程中2种不同的支承体系方案,并通过足尺模型试验研究钢锚梁对斜拉索索力的分配比例。结果表明:斜拉索初张时采用边跨固定、中跨滑动,斜拉索张拉后两端固定结构体系的钢锚梁承担了斜拉索索力水平分力的83.7%,钢锚梁与塔壁对索力水平分力的分配比例为8∶2,该体系能够发挥钢锚梁平衡斜拉索索力的作用,且结构可靠度高。  相似文献   

13.
重庆东水门长江大桥主桥为双塔单索面公轨两用半飘浮体系部分斜拉桥,跨径布置为(222.5+445+190.5)m。桥塔采用天梭造型。主梁采用2片桁双层桥面钢桁梁型式,桥面采用板桁组合体系。斜拉索采用单索面稀索体系,每根斜拉索由139束平行钢绞线组成,最大索力15 000kN。索梁锚固采用在钢横梁中点位置设置大型钢锚箱的型式;索塔锚固采用外置式钢锚箱型式,钢锚箱通过剪力钉与分离式塔肢进行连接,索力由剪力钉、锚箱侧拉板和摩擦力共同承担。开发了用于超大吨位钢绞线斜拉索整体张拉的调索设备。开展板桁组合式桥面板的传力机理理论及试验、超大吨位钢绞线斜拉索的疲劳试验、索塔锚固区足尺模型试验等相关研究,验证了结构的安全性和合理性。  相似文献   

14.
济宁市梁济运河大桥索塔锚固采用钢锚箱结构,钢锚箱四面均通过剪力钉与塔壁混凝土连接,受力较为复杂,通过制作实桥索塔锚固结构第8节段1∶1节段模型,并施加与该节段斜拉索索力大小及方向一致的荷载进行试验,测试剪力钉的应力.试验结果表明,剪力钉结构能够达到传递剪力的目的,且具有足够的安全储备.锚固区端板剪力钉应力沿竖向表现为上...  相似文献   

15.
桃花峪黄河大桥主桥为主跨406m的大跨度钢箱梁自锚式悬索桥。该桥吊杆-主梁锚固区采用锚箱式锚固结构,由布置在钢箱梁腹板外侧的锚固板、承压板及加劲板等组成,板杆空间交错,受力复杂。为验证该桥锚固区受力的合理性,采用ANSYS建立主梁空间节段有限元模型,对锚固区各板件的受力状况、锚固板件与箱梁外腹板焊缝受力特性及吊杆索力的扩散规律进行了分析,得到锚固区的受力特性。结果表明:吊杆索力通过锚头锚圈、垫板、承压板、锚固板、主梁腹板传递扩散到整个钢箱梁断面;锚固区各板件应力均满足规范要求,结构受力合理且应力在各板件间传递流畅。  相似文献   

16.
该文采用大型有限元分析软件Ansys对独塔斜拉-自锚式悬索组合体系桥吊杆锚固区建立计算模型,分析了该桥在最不利荷载组合下,吊杆力最大区段对应的锚固区各构件的应力与变形情况。分析结果表明:采用该构造形式锚固区整体刚度不足,构件最大位移达3.7mm;在钢板焊接处出现了应力集中情况,应力值大于设计允许值。根据分析结果确定了锚固区整体刚度及钢锚梁与横隔板焊接处局部应力控制成为进一步优化设计的控制因素。对此该文初步提出了两种设计优化方案,即改变横隔板厚度和对横隔板增加横向与纵向肋条,以此提高横隔板刚度,改善构件应力集中现象。  相似文献   

17.
为研究帆型钢塔锚固区应力分布以及传力机理,以宁波滨海五路跨路中湾江桥(单索面独塔斜拉桥)为工程背景,基于有限元软件MIDAS FEA 3.6.0,采用等效板厚法,建立了钢塔GT8#节段全实体单元有限元模型,对主要受力板件应力分布、传力机理进行了分析。结果表明:钢锚箱各板件Von Mises应力均小于200 MPa,满足规范要求;钢锚箱承剪板与钢塔内外腹板连接处存在应力集中,但范围分布有限,应力扩散较快;通过对比水平钢拉杆三种不同的截面型式,确定了丰字形,既能满足受力需要,又简化了节点构造,降低了钢结构加工制造难度。通过分析不同翼缘伸入塔肢长度对锚固区应力分布的影响,提出了采用2倍钢拉杆高度为最优设计方案。  相似文献   

18.
为了解组合式锚拉板索梁锚固构造在混凝土斜拉桥中的受力特性,以某(34+81+115)m跨铁路斜拉桥为背景进行研究。该构造由钢拉板、预埋混凝土梁内的工字型钢构成,工字型钢与混凝土采用PBL键及剪力钉连接。采用有限元软件,建立锚拉板及索梁锚固区有限元数值模型,分析了钢拉板、锚固区混凝土、预埋工字型钢的受力状态,并通过模型试验验证了关键焊缝的抗疲劳性能。结果表明:钢锚拉板与锚拉筒连接焊缝圆弧过渡处附近有较明显的应力集中现象;锚固段混凝土顶部(第一排PBL键以上至梁顶范围)主拉应力较大,超出混凝土的抗拉强度;各主要焊缝疲劳试验均没有发现宏观裂纹,满足抗疲劳设计要求;该构造为混凝土斜拉桥索梁锚固提供了一种解决方案。  相似文献   

19.
钢桁梁悬索桥柔性中央扣梁端锚固方式比较研究   总被引:1,自引:0,他引:1  
通过比较某在建的大跨径钢桁梁悬索桥上2种柔性中央扣斜拉索梁端锚固方式,研究了锚箱式和耳板式柔性中央扣锚固系统的构造和设置方法,并运用大型有限元分析软件ANSYS进行了空间有限元分析,分析了锚固系统的传力途径及各板件的应力分布情况,分析结果表明柔性中央扣斜拉索耳板式锚固系统应力集中点较少且应力极值较小,相比锚箱式系统更适合在索力不太大又受结构安装空间限制的钢桁梁悬索桥上使用。该结论可为今后在同类大跨径钢桁梁悬索桥上选择合适的柔性中央扣斜拉索梁端锚固系统提供有意义的参考。  相似文献   

20.
湖北荆岳长江公路大桥主桥为(100+298)m+816m+(80+2×75)m双塔混合梁斜拉桥,索塔锚固区采用钢牛腿+钢锚梁结构。为掌握斜拉索索力在实桥索塔锚固区结构上的响应和受力机理,在该桥成桥荷载试验阶段选择南塔第26节段进行了试验测试。通过测试钢锚梁、钢牛腿的应力和变形,并与同节段索塔锚固区节段模型试验结果进行比对分析。结果表明:在试验荷载作用下,试验节段实测索力增量与理论索力增量相差不大;在相同索力增量下,实桥锚固区的应力测试值、钢锚梁的水平力和竖向力荷载承担比例均比节段足尺模型试验值略小,二者的应力分布规律基本一致,这些试验监测数据可供今后类似桥梁设计时参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号