共查询到20条相似文献,搜索用时 46 毫秒
1.
《机车电传动》2021,(5):161-166
针对IGBT老化失效问题,提出一种基于遗传算法改进的小波神经网络时间序列预测方法。在分析IGBT失效原理的基础上,利用IGBT老化数据集,选取关断瞬时"集电极-发射极"尖峰电压为失效特征参数,采用滑动时间窗法构建训练集与测试集,然后在MATLAB中搭建遗传算法改进的小波神经网络预测模型进行预测,并与传统的小波神经网络预测模型对比分析。试验结果显示,遗传算法改进的小波神经网络预测方均误差为0.017 1,方均根误差为0.130 9,平均绝对误差为0.109 6,分别比传统小波神经网络预测模型降低了0.005 7, 0.020 0, 0.064 0,有效提升了IGBT时间预测的精度。 相似文献
2.
通过南通地铁软土层基坑降水模型试验发现,降水引发的基坑地表沉降随着监测点距基坑支护桩距离的增大而减少,工程中距离支护桩越远,沉降量越小.在不同的监测点沉降量的监测值与公式计算值总体变化规律相似,但受降水因素、施工扰动和地下多变的岩土环境等影响,存在一定的随机性.利用权值参数对小波神经网络的激励和输出函数进行修正,利用梯度下降的方法对伸缩和平移参数进行优化.在此基础上,以水位降深、土层的压缩模量、厚度、固结度和监测点方位为输入参数,基坑总沉降量为输出参数建立改进后的随机小波网络基坑地表沉降预测模型.工程实例表明,改进后的随机小波网络模型能使基坑地表沉降预测值较好地拟合工程实测值,误差均小于±8%,相比传统公式的计算值更具合理性. 相似文献
3.
4.
功率预测对于接入大量风电的电力系统运行具有重要意义。文章对提前4 h的风电机组出力预测进行了研究,分别采用BP神经网络法直接预测输出功率,以及时间序列法间接预测输出功率,并将两种方法组合以提高预测精度,组合权系数的选取以方差最小为目标函数。研究结果表明,不同方法的预测精度不同,尤其是在个别预测点处不同模型的误差差别较大,组合预测可减小预测系统的误差,提高预测精度。 相似文献
5.
基于BP神经网络的铁路货运量预测 总被引:8,自引:0,他引:8
在铁路货运量预测中,为改善传统预测方法数据拟合度不高、外推性不强等问题,提出基于BP神经网络技术的货运量预测模型,该模型采用贝叶斯正则化方法以提高神经网络推广能力。实验比较发现,该模型具有较强的自适应性,其拟合、预测结果优于灰色预测模型GM(1,1)和修正指数回归模型,证实了该方法的可行性和可靠性。 相似文献
6.
7.
8.
针对城市轨道交通客流预测问题,采用离散一维Daub4,小波分析方法对某一时间段的原始客流时间序列数据进行分解;以分解得到的高频分量和低频分量为样本数据,对最小二乘支持向量机进行训练,确定最小二乘支持向量机的核参数σ,以及系数a和b.利用训练后的最小二乘支持向量机预测未来一段时间客流时间序列数据的高频分量和低频分最,然后再利用Daub4小波分析方法对预测的高频分量和低频分量进行数据重构,从而得到预测的未来一段时间客流时间序列数据.与历史平均预测法和灰色预测法进行比较,结果表明,基于小波分析的支持向量机客流预测方法用于轨道交通短期客流预测具有更好的精度. 相似文献
9.
基于小波神经网络的建筑火灾预测模型及应用 总被引:6,自引:0,他引:6
随着我国城乡建设的飞速发展,建筑火灾形势日趋严峻,依靠传统的管理技术和方法已远远不能适应社会和民众对安全的需要。针对某城市建筑火灾非线性时间序列,建立了小波神经网络(WNN)预测模型,计算分析证明了该模型的可行性。该模型可与消防工作相结合,建立和实施城乡综合防灾减灾系统,实现城乡综合防灾减灾的科学管理。 相似文献
10.
针对现有铁路货运量预测方法的不足,建立了基于相空间重构的神经网络预测模型。该模型在对货运量原始数据进行相空间重构的基础上,将重构后的数据输入神经网络进行学习训练,最后选取待预测的时间点来预测铁路货运量的发展趋势,并以大秦线1989--2008年的货运量数据为基础进行预测与验证分析。 相似文献
11.
Elman递归神经网络在结构分析中的应用 总被引:1,自引:0,他引:1
给出了Elman动态递归神经网络的网络结构和基本原理。基于Elman递归神经网络能够逼近任意非线性函数的特点,提出了一种基于Elman递归神经网络建立结构分析模型的方法。利用Elman递归神经网络对桁架进行建模,真实地反映了桁架结构的动态特性。 相似文献
12.
基于径向基神经网络的铁路客货运量预测研究 总被引:1,自引:0,他引:1
根据径向基神经网络具有分析非线性动态系统的混沌特性的特点,对铁路客货运发送量相关时间序列进行分析和研究,在Takens相空间重构的基础上,利用互信息方法求嵌入时延、伪邻域方法求嵌入维数;应用G-P方法和最大Lyapunov指数方法对铁路客货运量时间序列进行混沌识别;根据RBF神经网络的学习算法和辨识原理,对铁路客货运量预测流程进行分析。应用径向基神经网络对铁路客货运量自1999-01-01-2012-08-27共4 988 d的发送量为基础进行径向基神经网络预测;并对预测误差进行检验及对预测结果进行分析。研究结果表明:基于径向基神经网络预测值能很好地与实际值相吻合,因而在铁路客货运量相关时间序列中预测有广泛的实用价值。 相似文献
13.
岩爆是铁路隧道建设中主要灾害之一。为了准确预测铁路隧道岩爆烈度等级,以岩石应力系数σθ/σc、岩石脆性系数σc/σt以及弹性能量指数Wet作为岩爆烈度评价指标,提出一种基于混合粒子群优化算法优化的径向基(RBF)神经网络岩爆预测模型。首先在国内外研究成果基础上,选取80组已有岩爆实例作为模型基础数据;然后运用结合了模拟退火算法的粒子群算法(混合PSO)改进径向基神经网络,通过训练数据选取最优的权值W和基函数标准差σ,得到混合PSO-RBF神经网络岩爆烈度预测模型;最后将模型应用于实际铁路隧道工程进行验证。研究结果表明:该模型兼顾个体最优和全局最优,能够正确、有效的对铁路隧道岩爆等级做出预测,为铁路隧道岩爆预测提供了一种新方法。 相似文献
14.
15.
流动度是RPC配制的一个关键指标,它直接反映了其工作性的优劣,但其影响因素复杂,难以用统一的数值关系直接描述RPC流动度与其影响因素的量化关系,目前还没有合适的计算方法,为此,提出控制RPC流动度的数值方法,即引入遗传神经网络对RPC的流动度进行预测控制。在建立网络模型后,选取适当的参数,进行训练仿真分析。结果表明,该遗传神经网络模型是有效的,对RPC的流动度预测有较高的精度和稳定的预测结果,与单纯的BP神经网络模型相比,具有精度高、训练速度快、工作性能稳定等优点。 相似文献
16.
17.
基于径向基神经网络的铁路货运量预测 总被引:12,自引:0,他引:12
货运量预测是铁路运输部门一项重要工作,因此,关于铁路货运量预测理论和方法的研究一直是一个热点。但是,铁路货运量受多种因素影响,且各因素的作用机制通常不能或无法用精确的数学语言来准确描述。本文采用径向基函数(RBF)神经网络对货运量进行分析及预测。通过对1989~2002年全国铁路货运量的历史数据分析处理后,得到铁路货运量增长量的时间序列,将时间序列视为一个从输入到输出的非线性映射,引入RBF神经网络来进行非线性映射的逼近。对网络进行学习与训练仿真实验后,用2003~2004年的增长量进行模型检验,并与BP神经网络、灰色预测模型预测结果进行对比,结果表明,应用RBF神经网络对铁路货运量进行短期预测预测精度更高、效果更好。 相似文献
18.
19.
20.
以城市轨道交通车站安全为研究对象,建立基于概率神经网络的车站客流安全状态评价模型。将模型提炼出的城市轨道交通车站客流安全状态评价指标作为输入参数,将评价等级结果作为输出参数,以各指标不同等级的评价标准作为模型训练数据来源。为验证方法的有效性,设计不同的客流场景,利用微观仿真软件VISSIM对车站客流运行状态进行仿真实验,以获得各指标的数据。仿真应用结果表明,该方法能够对城市轨道交通车站客流安全状态进行评价。 相似文献