首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
配件名称螺母蝶母排气消声器总成蝶栓排气跨接管双头螺栓螺枪催化转化器隔热罩铆钉排气歧管双央蝶栓螺栓排‘e歧管隔热罩(左)排气跨接管上隔热罩排气跨接管总成排气歧管(左)排气歧管(有)隔热罩一前节消声器催化转化器密封颦氧传感器排气消声器吊钩螺母螺阻后拖钩总成排气歧管衬垫排气歧管上隔热覃(右)排气歧瞥密封总成弹簧一排气歧管排。i歧管蝶母催化转化器隔热罩!效似化刺总成(带排气歧管)三效催化剂总成(带排气歧管)排。i歧管上隔热罩(右)轮毅盖总成年轮平衡块车轮平衡块年轮平衡块车轮螺帽乍轮半衡块车轮平衡块乍轮平衔块车轮平衡块乍轮…  相似文献   

2.
消声器是汽车排气系统的重要组成部分,其吊挂机构具备一定的减振功能。在实现减振的过程中,伴随着消声器的位移,会出现限位螺栓紧固力的变动,采用合理的吊挂机构能够减少松动限位螺栓风险。  相似文献   

3.
在采用螺纹联接的设计中,为维持机械、构架等联接体的强度和性能,最重要之处是决定外螺纹件(如螺栓)所必需的直径及强度等级。而选择螺栓的直径及强度等级,主要根据螺栓所能提供的紧固力,即以螺栓的屈服紧固力为基础。  相似文献   

4.
在发动机台架试验中,出现排气歧管开裂和垫片漏气的故障,利用有限元分析对排气歧管进行螺栓预紧状态下的结构分析,得到了排气歧管上的应力分布图,开裂位置和cae计算结果吻合,利用排气垫片的面压试验,得到了密封垫上的压力分布图,发现密封垫压力较低,不能有效密封高温燃气,通过设计优化,更改后的零件在试验过程中没有出现上述故障,给以后的项目提供了设计经验。  相似文献   

5.
在车辆设计生产中,高功率输出、低燃油消耗和低尾气排放等性能往往在一定程度上相互抵触,难以周全。2012款雪佛兰科迈罗配备的3.6升燃油直喷V6发动机则较好地实现了三种性能之间的协调,其手段在于采用了新气缸盖设计,使之与尾气排放歧管集成,采用一体化铸铝部件打造。新款V6发动机含有两套排气歧管-气缸盖一体化部件,每套部件取代了原先的多个零部件,包括:一个带有六个螺栓的铸铁排气歧管,一个垫圈(Gasket)以及一个带有三个螺栓的防热罩。通过取消并替代  相似文献   

6.
倪小坚 《专用汽车》2023,(12):16-19
发动机排气歧管运行在高低温交变载荷下局部存在热应力集中引起塑性形变,易产生疲劳破坏,影响使用寿命。运用ANSYS workbench模块对排气歧管进行了流热固耦合性能分析,通过对高温高压废气流动模拟得出排气歧管的管道流场、应力场和温度场,确定了排气歧管塑性形变集中位置,验证了排气歧管设计,同时对排气歧管结构性能进行了分析。  相似文献   

7.
通过对方向机紧固螺栓表面处理工艺改进前和修正后各种状态下的参数对比,得出进一步提高拧紧后的轴向力安全系数的有效措施。通过对方向机支架螺纹孔强度校核,进一步确认方向机装配时的螺紧固螺栓轴向预紧力上限值。  相似文献   

8.
年份选装号l N&L46&L46&LB8&LW9&LW9&乙W9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW9&LW916&LW9l&LW9l&LW9㈠&LW9憾&LW;l(&LW9l&LW9I&LW9l&LW9I&Lw9I&LW9l&LW9I&LW91&I。W9l&LW91&LW91&LW9憾: 配件名称爆震传感器总成机油压力显示器开关总成机油标尺管油底壳螺栓督们阀懒I热删冰蟛簪啪排气跨接管双头螺栓供油【u】油管卡箍密封垫组件排气歧管(右)螺母进气歧管压力传感器总成ElGR总成螺母排气歧管双头螺栓排放蒸发炭罐换气阀总成排气歧管衬垫曲轴箱强制通…  相似文献   

9.
为在设计开发过程中初步预测某紧耦合式排气歧管的热负荷,采用CFD和有限元联合分析方法。首先,通过搭建排气歧管内外流场分析模型和CFD仿真得到排气歧管近壁面的瞬态热边界条件;接着,以时域内平均的流体温度和热交换系数为热边界,通过有限元软件仿真排气歧管壳体的温度场分布;最后,根据温度场的分布分析排气歧管的热应力和热变形,并模拟排气歧管正常工作和停车冷却这一循环过程,在4个循环后,其累计当量塑性应变趋于稳定,说明该排气歧管能承受其热负荷而不破坏。  相似文献   

10.
螺栓松动作为汽车可靠性问题中的一个难题,经常困扰着汽车设计人员。文章将针对一款动力总成悬置胶垫螺栓松动问题,通过与紧固件厂家技术合作,对螺栓预紧力、安装扭矩和接触面屈服强度进行计算校核。并针对计算发现的悬置支架接触面存在的屈服压溃风险及螺栓预紧力不足等问题,分别制定了相应的整改方案,最终确定了此悬置紧固螺栓的安装扭矩范围,满足悬置胶垫紧固预紧力要求。根据文章计算方法确定的安装扭矩进行定扭后,通过紧固件横向振动试验和越野路路试,动力总成悬置胶垫紧固螺栓未再出现松动现象,可以看出文中螺栓松动计算校核和改进方案有效。文中案例通过对螺栓预紧力、安装扭矩和接触面屈服强度等进行符合性计算校核和改进,为汽车螺栓松动问题整改提供了一个非常好的解决思路和方法。  相似文献   

11.
针对发动机开发过程中排气歧管开裂的工程问题,采用Abaqus CAE建立了排气歧管及其相关部件的有限元模型,根据排气歧管裂纹试验规范模拟计算排气歧管瞬态温度场;随后进行排气歧管的瞬态流固耦合分析,计算结果表明排气歧管局部存在塑性应变过大的情况,与裂纹试验中排气歧管开裂位置吻合;经过局部结构优化,最终解决了该排气歧管的开裂问题。  相似文献   

12.
为保证柴油发动机的性能.可靠性.就必须在其关键部位保证机件联接的牢固性。此类关键部位包括:涡轮增压器的安装处、排气歧管的接头以及那些处于极端高温和剧烈振动环境之中的联接、安装点——在这些区域内.在热力.机械负荷的作用下,容易引发紧固力减弱而致紧固件松脱之故障。因此紧固件必须防松.常规防松措施有:尼龙自锁环、粘结剂等。  相似文献   

13.
(接上期) 6.排气歧管-催化器模块 用于新型奥迪A3轿车的2.0L-FSI汽油机采用了双排气歧管.图12示出了双排气歧管相对于单排气歧管在低转速范围内提高发动机扭矩的效果. 与开发进气模块一样,开发排气歧管-催化器模块也同时设计了多种前置催化器位置,并运用了不同的技术方案,以便在催化器中获得最佳的气体流动.现在该机所应用的技术方案是满足所有要求的最佳折中方案,它采用不锈钢制成排气歧管-催化器壳一体化的结构型式.  相似文献   

14.
李智安 《天津汽车》2009,(12):52-55
发动机排气歧管的传统设计方法已不能满足现代设计的需求,应用计算流体动力学(CFD)可以深入地了解排气歧管内部的压力和流场分布。文章利用发动机排气歧管气体流动的数学描述及排气歧管三维数值模拟及Fluent软件平台,采用k-ε湍流模型,对排气歧管内部压力和速度的分布情况进行了模拟和分析。结果表明,应用CFD来研究排气歧管和模拟其内部流动状况,计算效率高,容易实现,CFD对优化发动机排气歧管的结构设计和改善排气效果具有很好的指导意义。  相似文献   

15.
发动机排气系统的密封决定着发动机性能,研究发动机的振动对密封性能的影响。应用ANSYS Workbench软件分析,对汽车发动机缸盖、排气歧管密封垫及排气歧管的装配体进行带有预应力的模态分析,得到该装配体的固有频率,并与发动机对外激振频率进行比较,进而判断两者之间不能发生共振现象。证明该因素不会影响发动机缸盖、密封垫片及排气歧管装配体的密封性能。  相似文献   

16.
一台BJ632A旅行客车,发动机经大修竣工后试车,运转几分钟后可视3、4缸排气歧管发红,红得似电热丝。经试验能将报纸、香烟点燃,但1、2缸排气歧管温度正常无异样。 是何缘故导致排气歧管温度过高发红? 一般认为是配气机构所致,虽然曲轴正时齿轮与凸  相似文献   

17.
正1排气系统汽车排气系统是指收集并且排放废气的系统,一般由排气歧管、排气管、催化转换器、排气温度传感器、消声器和排气尾管等组成。汽车排气系统是主要排放发动机工作时所产生的废气,同时减少排出的废气污染和噪音。1.1排气系统及排气歧管1.1.1单排气系统及双排气系统直列型发动机在排气行程期间,气缸中的废气经排气门进入排气歧管,再由排气歧管进入排气管、催化转换器和  相似文献   

18.
正当前,汽车的的可靠性能及耐久性能越来越被消费者所关注。在高温环境或者大负荷工况下往往会出现汽车的排气温度十分高,超过了排气歧管的最高耐热温度从而使得排气歧管被烧毁的情况,造成交通事故。本文通过研究汽车排气歧管过热保护的策略得出结论:当排气温度过高,超过了排气歧管的耐热温度时,通过快速加浓混发动机缸内燃烧的混合气浓度能够有效的降低发动机排气温度,从而达到保护排气歧管的目的。  相似文献   

19.
正一、排气系统汽车排气系统是指收集并排出废气的系统,一般由排气歧管,排气管,催化转换器,排气温度传感器,消音器和排气尾管等组成。汽车排气系统主要是排放发动机工作所产生的废气,同时使排出的废气污染减小,噪音降低。(一)排气系统及排气歧管1.单排气系统及双排气系统  相似文献   

20.
鉴于某增压汽油机排气歧管在热冲击试验中的开裂问题,采用流固耦合热分析方法,用计算流体力学和有限元软件计算了排气歧管的温度场和热应力分布,计算结果与试验数据吻合较好,并证实了排气歧管的开裂系热应力过高所致。据此,对排气歧管结构进行了若干方案的改进,最终采用四二合一的构型,经试验测试不再发生开裂现象。说明流固耦合热分析是解决排气歧管开裂问题的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号