首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在设计未来的汽油机时,均质充量压燃(HCCI)堪称为理想的燃烧方式。但目前HCCI燃烧方式仅限于低转速、中低负荷区域,并有待拓展其运行范围。目前,大部分汽油机仍在采用火花点燃(SI)燃烧方式。介绍了一种构想,鉴于HCCI燃烧还不能在所有发动机运行条件下实现,在高负荷及高转速条件下仍要采用SI燃烧方式,因此建议应用SI燃...  相似文献   

2.
HCCI发动机是什么? HCCI的全称是"Homogenous Charge Compression Ignition",即均质充气压缩点燃方式。HCCI不同于传统的压缩点燃方式和火花塞点燃方式,是一种全新的发动机燃烧方式。现代车用发动机分为压燃式发动机(柴油机是其典型代表)和点燃式发动机(汽油机是其典型代表)。现  相似文献   

3.
均质充气压缩点燃着火HCCI(Homogeneous Charge Compression Ignition)作为新一代的内燃机燃烧方式,具有传统火花点火汽油机均质混合气特质,同时具有与传统压燃柴油机相当的高效率,具有实现高效、低排放燃烧的巨大潜力。在汽油机普遍采用电控技术,发动机性能得到较大改善的今天,稀薄燃烧技术为汽油机性能的提高提供了广阔的前景。文中在介绍HCCI燃烧技术的基础上,分析了汽油机实施HCCI的可行性及其实用化所面临的问题。  相似文献   

4.
(接上期)四、均匀充气压燃发动机(HCCI)均匀充气压燃发动机(HCCI)既不同于典型的汽油机又不同于柴油机,它的能量释放不是发生于火焰推进。为了使燃料氧化,将燃料和空气预先混合成稀薄气体充入发动机的汽缸,随后将其压缩到较高的压力和温度直到发生类似汽油机敲缸现象的反应。这  相似文献   

5.
汽油机的燃油经济性比柴油机差,所以降低汽油机的能耗则显得更为迫切.稀薄燃烧是提高汽油机燃油经济性的重要手段.近些年来,对以分层稀薄燃烧缸内直喷汽油机和均质压燃汽油机为代表的新型稀薄燃烧模式的研究,极大地提高了汽油机的燃油经济性.本文论述了稀薄燃烧的实现方式及其优缺点,并重点介绍了稀薄燃烧的三种形式:气道喷射稀燃系统(PFI)、直接喷射稀燃系统(GDI)和均质混合气压燃系统(HCCI),且相互比较.文章最后简要论述稀薄燃烧的发展趋势及我国在这方面的研究状况.  相似文献   

6.
如何将均质压燃(HCCI)应用到实际发动机上是当前HCCI研究的热点之一,采用HCCI/SI复合燃烧模式是潜力巨大的出路之一。当发动机采用这种复合燃烧模式时,HCCI只能在一定范围内运行的特点决定了发动机在HCCI和SI两种燃烧模式边界工况发生负荷变化时,需要进行两种燃烧模式的相互转换。实现两种燃烧模式的平稳转换需要对转换过程中影响转换平顺性的因素进行分析,综合控制。通过分析试验所得数据,本研究基于主节气门运动规律、点火提前角和供油规律3个主要影响因素提出了主动、协同的控制策略,实现了两种燃烧模式的平稳转换。  相似文献   

7.
在往复式发动机中,除了火花点燃式燃烧和柴油压燃燃烧的运转方式外还有第3种运转方式,即均质充量压燃燃烧(HCCI).HCCI模式发动机的运转情况被认为是高效和稳定的。在部分负荷工况下可以大幅度降低NOx的排放.把HCCI燃烧应用到发动机方面尽管仍有一些困难.但HCCI燃烧方式表明在发动机应用的巨大替力,本文将阐述HCCI与传统发动机燃烧方式的不同及其未来的展望。  相似文献   

8.
均质充量压缩着火燃烧(HCCI)技术的提出为内燃机的发展开辟了一种更为节能高效、绿色环保的新模式,着火性能差异较大的两种燃料掺混是实现均质混合压燃着火控制的有效方法。文章利用CHEMKIN化学反应动力学模拟软件对二甲醚(DME)/甲醇混合燃料均质混合压燃燃烧过程进行了数值模拟研究,重点分析了燃料掺混比、过量空气系数、发动机转速以及进气温度对HCCI发动机燃烧特性的影响规律。  相似文献   

9.
对预燃室壁涂有催化剂的均质压燃(HCCI)发动机的燃烧过程进行了数值计算,分析了催化燃烧对HCCI发动机燃烧特性的影响;同时分析了预燃室内催化剂种类、过量空气系数、进气温度、进气速度、缸径以及预燃室壁温对HCCI发动机燃烧特性的影响。结果表明,预燃室存在催化燃烧时对HCCI发动机的着火时刻有很大的影响:随着过量空气系数及预燃室进气速度的增加,HCCI发动机的着火时刻提前;催化剂种类、预燃室缸径以及预燃室壁温对HCCI发动机着火时刻影响不显著,但对缸内燃烧温度影响显著。  相似文献   

10.
也许大部分人还对HCCI有些陌生,张兴业解释说:"HCCI压燃发动机是将燃料和空气预先混合成稀薄气体充入发动机的气缸,随后压缩处理达到较高的压力和温度,直到发生类似汽油机的爆震敲缸反应。由于这种方式的能量释放不是产生于火焰推进,而是产生于爆发,形不成颗粒  相似文献   

11.
也许大部分人还对HCCI有些陌生,张兴业解释说:“HCCI压燃发动机是将燃料和空气预先混合成稀薄气体充入发动机的气缸。随后压缩处理达到较高的压力和温度.直到发生类似汽油机的爆震敲缸反应。由于这种方式的能量释放不是产生于火焰推进.而是产生于爆发。形不成颗粒物和氮氧化物排放。因此在环保方面的改进功效相当明显。”同时,HCCI发动机还可以使用多种燃料。  相似文献   

12.
基于2阶段喷射的缸内直喷汽油机HCCI燃烧的研究   总被引:4,自引:0,他引:4  
在缸内直喷汽油机(GDI)上采用2阶段燃油喷射技术来控制缸内混合气形成和燃烧,在GDI发动机上实现了均质混合气压燃(HCCI)燃烧方式,研究了缸内2阶段汽油喷射对HCCI燃烧特性的影响。结果表明,压缩行程中的第2次喷油时间可以有效地控制燃烧始点,二次喷油持续期可以控制燃烧速率、燃烧相位和拓宽发动机负荷。  相似文献   

13.
针对奇瑞缸内直喷2.0L发动机,利用耦合详细化学反应动力学的发动机循环模拟计算,优化设计了HCCI配气方案,这是国内率先在多缸4冲程产品汽油机上实现了HCCI燃烧,缸内循环波动和缸问循环波动小于2%,并大幅度降低了油耗和NOx的排放.  相似文献   

14.
文彤 《汽车与配件》2005,(13):40-42
均质压燃HCCI(Homogeneous Charge Compression Ignition)燃烧概念是发动机燃烧技术的一大革命,也是发动机创新性技术,它是采用均匀的空气与燃料混合气,但用压燃式点火代替火花塞点火,这种燃烧方式具有较高的热效率、低的NOx和PM排放。  相似文献   

15.
天然气发动机燃烧方式分析   总被引:2,自引:0,他引:2  
根据混合气形成和着火方式将天然气发动机的燃烧模式分成均质混合气点燃、非均质混合气点燃、均质混合气压燃和非均质混合气压燃/引燃4种。分析了这4种燃烧模式针对发动机性能和排放方面的特点,讨论了目前存在的问题。认为目前最有实用价值的模式为柴油引燃天然气非均质扩散燃烧,因为其热效率高于火花点火发动机,与传统柴油机相当,而有害排放物排放却较柴油机明显降低,并且相对于HCCI更易实现。  相似文献   

16.
汽油机稀薄燃烧研究的新进展——从GDI到HCCI   总被引:7,自引:0,他引:7  
论述了GDI采用分层稀薄燃烧的工作特点,详细分析了其开发使用中的难点问题。同时,对被称为第4种燃烧方式的均质混合气压燃模式进行了介绍,总结和分析了它有可能大幅度提高汽油机热效率和降低NOx排放的特点和原因,并提出它在全工况平面内的着火燃烧控制方面的难度。通过分析认为,GDI与HCCI方式的有机结合可能是未来高效低污染汽油机的发展方向。  相似文献   

17.
利用无因次的化学动力学模拟方法研究天然气成分对发动机燃烧的影响,已在国外受到重视。研究表明:均匀进气的压燃发动机(下缩写为HCCI)的燃烧对天然气的成分很敏感,为此,需要对发动机进行合理控制。  相似文献   

18.
提高车用发动机能量利用率研究进展   总被引:6,自引:0,他引:6  
描述了近几年车用汽油机发展的几种新技术,包括GDI和HCCI燃烧技术以及混合动力技术的应用和发展,分析了它们的特点和在节能、环保等方面的作用。介绍了利用发动机排气余热的温差发电技术。论述了利用发动机冷却水余热和排气余热来改善发动机性能的新技术,该技术通过一套发动机后接蒸气动力装置,回收发动机余热能量做功,从而提高发动机能量利用率。探讨了这一新技术的研究内容,展望了它的应用发展前景。  相似文献   

19.
降低汽车发动机排放的技术   总被引:3,自引:0,他引:3  
于秀敏  杨世春  高莹 《汽车工程》2002,24(5):445-450
从机内净化技术,机外净化技术和应用清洁燃料等方面讨论了降低汽车发动机排放技术,对车用发动机分层充气预混合稀薄燃料(MPFI)、汽油机直喷燃烧(GDI)和均质混合压缩点火式燃烧(HCCI)等燃烧技术,选择催化还原剂(SCR)、NOx存储器还原催化系统(NSR)、等离子体辅助催化剂等新的稀燃NOx催化剂和微粒处理系统,通过这些技术的综合运用达到不断严格的排放标准和环保要求。  相似文献   

20.
均质充量压缩点燃着火HCCI(Homogeneous Charge Compression Ignition)作为内燃机新型燃烧方式。具有高效、低排放燃烧的巨大优势,为汽油机性能的提高提供了广阔前景。文中基于化学反应模拟软件Chemkin,利用九区模型模拟了甲烷的HCCI燃烧过程,分别讨论了进气压力、进气温度、压缩比和燃空当量比对甲烷HCCI燃烧的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号