首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
为了研究炭质泥岩路堤填料的崩解特性,通过拟定不同的试验方案,对炭质泥岩在室内外不同环境,以及不同初始条件进行崩解试验,引入分形理论分析炭质泥岩崩解过程中颗粒的粒度变化。研究结果表明:炭质泥岩崩解是与干湿循环相关的渐进过程,在该过程中颗粒级配组成随试验的进行不断变化;炭质泥岩的崩解形式及崩解产物颗粒分布与初始状态密切相关;试验过程中,分维数随崩解颗粒级配的变化而变化,其变化速率与崩解速率一致;当分维数位于2.26~2.54时,崩解趋于完成;工程实践表明:可将分维数作为炭质泥岩崩解后是否可用于高速公路路堤填料的控制指标。  相似文献   

2.
红层泥岩崩解特性室内试验研究   总被引:7,自引:2,他引:5  
对侏罗系遂宁组红层泥岩烘干、风干、原状等试样的浸水崩解特性进行了模拟试验研究.研究结果表明:试样在浸水瞬间有一个短暂的吸水增重过程.烘干、风干试样由于经历了剧烈的干湿循环而崩解迅速,原状样在保持天然含水量条件下崩解,不同条件下试样的崩解破坏形式是不同的.干湿循环导致含水量的变化是红层泥岩发生崩解的主要原因.  相似文献   

3.
在室内模拟气候条件下炭质页岩崩解试验中,通过跟踪崩解碎屑物的颗粒级别变化,发现当崩解达到一定程度后,崩解碎屑物的颗粒级配趋于稳定,试验表明炭质页岩的崩解特性可以用分形理论来描述;通过建立炭质页岩分形质量模型,求得其崩解稳定分维数.将该成果用于炭质页岩路堤填筑施工,以减少水和空气进入造成炭质页岩软化崩解带来的路堤变形.  相似文献   

4.
红砂岩的软化和崩解是具有复杂机制的物理现象。本文结合湖南通城至平江高速公路工程中遇到红砂岩,基于红砂岩崩解过程的分形机理,针对红砂岩崩解过程中的颗粒及其分数维变化特征,建立红砂岩完全崩解的分维数指标,并开展现场试验。试验结果表明:通平高速公路红砂岩属于III类红砂岩,但仍会崩解,故不能作为填石路堤对待;红砂岩崩解颗粒及其分数维变化的临界值最后稳定在2.6—2.7之间;采用“光静1遍+羊静1遍+羊振4—5遍+光振1遍+光振1遍”处治的红砂岩下路堤最大粒径控制在25cm以下的能力,弯沉满足设计要求;路基中的红层填料的分数维基本满足2.6—2.7要求,采用该工艺处治后的红砂岩路基崩解已经趋于完成,可用于93区填筑。  相似文献   

5.
炭质页岩用于路基填筑前,应将其置于特定条件下进行预崩解,判定其崩解状态是确定施工工艺的关键之一。该文在宜州至河池高速公路的多个工点取新鲜炭质页岩试样及完全崩解试样进行室内试验分析,首先采用加热装置模拟日照条件及50℃烘干条件,对新鲜炭质页岩试样进行崩解试验,并对试样洒水模拟干湿循环条件;然后在试验过程中实测各个干湿循环周期条件下崩解残留物的颗粒级配情况,同时采用激光粒度仪对完全崩解试样进行粒度分析,以验证崩解试验结果;最后,引入分形理论,采用质量求解分维数方法对试验成果进行分析,由结果可知,宜州至河池高速公路沿线炭质页岩崩解基本完成时对应的分维数约为1.7,可以此作为炭质页岩预崩解完成的标志。  相似文献   

6.
对4种不同矿物组分的泥岩进行了多次干湿循环崩解试验,分析了不同矿物组分泥岩的崩解规律。结果显示:1)粘土矿物含量较高的泥岩的崩解程度和速度要远高于石英、长石含量较高的泥岩,且粘土矿物含量越高,泥岩崩解物粒径越小,崩解物形状以圆片状、细颗粒状、泥状为主; 2)崩解物粒径分布曲线表明,粘土矿物含量越高的泥岩,粒径变化越明显,且粒径<0.25 mm的颗粒含量就越高。此外,粒径>5 mm的颗粒含量呈断崖式下降,随干湿循环的进行几乎降至为0; 3)依据4种泥岩在干湿循环下的崩解试验结果,将泥岩崩解性从弱到强分为了不崩解、弱崩解、中崩解和强崩解4个等级,并对不同崩解等级泥岩的石英类矿物、长石类矿物和粘土矿物的含量分别进行了划分,供工程应用参考。  相似文献   

7.
针对炭质泥岩遇水易软化、破碎及崩解的特点,以广西六寨-河池高速公路沿线的炭质泥岩为例,开展荷载及干湿循环共同作用下炭质泥岩崩解特征试验,并采用扫描电镜、X线衍射等方法系统研究炭质泥岩崩解过程中颗粒的形态、质量、粒径分布特征,进而探讨炭质泥岩崩解机理。试验结果表明:随着干湿循环次数的增加,炭质泥岩崩解宏观上表现为大粒径崩解物逐渐消失,小粒径崩解物的含量逐渐增大,微观上表现为黏粒逐渐脱落并流失,片状结构逐渐转化为细长针状结构,同时孔隙不断扩大,直至贯通;炭质泥岩第1次干湿循环过程崩解最为强烈,5次干湿循环后崩解趋于稳定,试样的不均匀系数及曲率系数均随循环次数的增加呈先上升随后逐渐稳定的趋势,相同循环次数下,荷载越大,不均匀系数及曲率系数越大;炭质泥岩崩解程度高,最终崩解率均大于30%,荷载越大,最终稳定时的崩解比越低,分别为50.68%、50.07%、41.09%及35.95%;炭质泥岩崩解具有分形特征,分形维数在前5次干湿循环过程中不断增长,之后逐渐趋于稳定,干湿循环次数相同时,分形维数随荷载的增加而增大。研究成果可为炭质泥岩路堤稳定性分析及工程实践提供参考。  相似文献   

8.
研究了以石灰岩、泥岩为代表的填料在填筑过程中的破碎规律,提出了用分维数表达石料颗粒组成特征的方法,并评价了其可用性.  相似文献   

9.
郑顺  易萍华  时宁 《交通科技》2013,(4):101-104
以瑞寻高速公路K1453+120段的红砂岩为研究对象,选取具有代表性的岩样进行室内崩解试验,分析各岩样在崩解过程中的颗粒级配变化情况,并分析其崩解的可能性。试验结果表明:岩样在浸水后1min内有崩解的现象,初崩时间较短;试样在经过烘干、浸水剧烈的干湿循环后出现快速崩解;在崩解过程中,崩解物颗粒大于5mm的颗粒含量逐渐减小,小于5mm的颗粒含量逐渐增加,但最终两者的颗粒含量趋于平衡。最后,对红砂岩的崩解机制进行了研究。  相似文献   

10.
为揭示干湿循环条件下崩解性红层软岩填料的强度特性,开展了3项试验。首先,制备了经受0~8次干湿循环作用的红层软岩填料压实试样进行固结排水三轴试验。结果表明:相同围压下红层填料试样的峰值强度随干湿循环次数增加呈现先下降后上升的特点,与此同时,在固结阶段,经历不同干湿循环变化试样的体变是随干湿循环次数单调增大的。然后,进行了受限环境下红层软岩的崩解试验,将具有崩解性岩块放在受限环境中经受干湿循环作用。结果表明:具有崩解性的岩块在受侧限环境中经历干湿循环,岩块整体上不崩解,但边角存在剥落现象。最后,对在首先环境下经历干湿循环作用的岩块饱和后进行抗压强度测试,发现岩块强度随干湿循环次数增加而降低,但是强度仍显著高于填料强度。以上试验研究表明:红层填料试样的峰值强度随干湿循环次数增加呈现先下降后上升的特点,与一般岩土不同。其展现的变化规律由3种作用机制综合形成,即干湿循环对岩土结构普遍的破坏作用导致的强度下降机制;受限条件下崩解性红层软岩经历干湿循环后仍保持原来的完整性的强度稳定机制;干湿和固结压力联合作用下,应力集中导致的颗粒边角被破碎形成的微观结构调整引起的强度上升机制。  相似文献   

11.
《公路》2018,(11)
为研究降雨条件下崩解炭质泥岩一维渗流特性,设计了一种测量崩解炭质泥岩在降雨条件下体积含水率变化规律的装置,通过设置3种降雨强度下崩解炭质泥岩土体的入渗试验,得到崩解炭质泥岩在不同降雨条件下随高程分布的各特征点体积含水率随时间的变化规律。同时,基于Geo-Studio软件中Seep模块对崩解炭质泥岩一维土柱进行数值模拟,验证了崩解炭质泥岩的渗流规律。结果表明:(1)崩解炭质泥岩路堤在降雨条件下沿高度方向的体积含水率变化呈现梯度变化规律,首先含水率由上至下依次升高达到平稳,随后底部土体率先饱和,最后全部土体达到饱和;(2)各特征点含水率达到平稳状态和饱和状态的时间与降雨强度成反比;(3)降雨过程中浸润线高度不断降低,浸润线的下降速度和拟合函数斜率均与降雨强度成正比,降雨强度越大浸润线到达碎石层的时间越短;(4)数值计算所得特征点含水率和浸润线的变化规律与试验结果基本一致,含水率变化更具规律性且浸润线深度在降雨中后期的结果较大。  相似文献   

12.
为研究红层泥岩改良土作为达成铁路路基基床底层填料的适应性,进一步扩展红层泥岩在铁路路基工程中的应用,在掌握达成铁路红层泥岩改良土物理力学性质的基础上,使用ZSS50循环加载设备对红层泥岩改良土路基进行了现场激振试验研究,模拟分析了不同轴重列车荷载作用下降雨前、后基床的动态特性及沉降规律.试验结果表明,红层泥岩改良土路基的动态指标及工后沉降等均满足设计要求.  相似文献   

13.
由于炭质泥岩遇水易风化、强度低、变形大,干湿循环作用下炭质泥岩路堤易形成纵横交错的裂隙网络,加速路堤边坡失稳。为分析干湿循环作用下预崩解炭质泥岩裂隙演化规律与强度特性,通过制备较大尺寸预崩解炭质泥岩试样,开展室外裂隙演化原位试验及裂隙试样直剪试验,实时拍摄不同干湿循环次数下试样裂隙扩展图像,并基于裂隙图像特征参数对各阶段裂隙特征进行定量化描述,进而构建预崩解炭质泥岩的抗剪强度与裂隙参数关系模型。研究结果表明:预崩解炭质泥岩裂隙数量、裂隙最大长度及裂隙率等裂隙参数均随干湿循环次数分为迅速增长、缓慢增长、趋于平缓3个阶段;各因素对裂隙发育影响程度由强至弱依次为初始含水率、干密度、干湿循环次数;含裂隙试样剪切时遇到裂隙剪切应力会发生暂时性衰退,不同裂隙参数试样的黏聚力变化显著,而内摩擦角变化甚微,内摩擦角变化主要取决于土体干密度的变化,而黏聚力变化取决于初始含水率,抗剪强度主要与黏聚力相关联。为研究土体抗剪强度与裂隙参数的关系,拟合得到了裂隙率与黏聚力的指数关系模型,发现其拟合变化曲线呈凹形的抛物线变化,其抛物线分急剧降低和趋于稳定2个阶段。研究成果可为预崩解炭质泥岩路堤工程施工及稳定性分析提供参考。  相似文献   

14.
王迅 《路基工程》2007,(4):99-101
红层泥岩其工程性质不能满足客运专线路堤填料要求。结合遂渝铁路无碴轨道综合试验段建设,以离心模型试验为手段,进行了三组不同状态红层泥岩填筑的路堤试验,研究比较了路堤沉降特性,为利用红层泥岩填筑客运专线路堤提供了重要参考。  相似文献   

15.
《中外公路》2021,41(4):357-362
为研究预崩解炭质泥岩抗剪强度、渗透系数与竖向荷载及干湿循环的关系,研发一套可施加竖向荷载的岩土干湿循环试验装置,分别利用直剪仪、渗透仪开展预崩解炭质泥岩干湿循环后抗剪强度及渗透试验研究。结果表明:预崩解炭质泥岩的抗剪强度与法向应力呈正相关关系,随竖向荷载、循环时间的增加而增大,随循环次数的增加而降低,且抗剪强度的变化主要是由于颗粒间黏聚力的变化。渗透系数与竖向荷载及干湿循环时间呈负相关关系,而随循环次数的增加呈正相关关系,拟合预崩解炭质泥岩抗剪强度与渗透系数的幂函数关系模型,可为预崩解炭质泥岩抗剪强度、渗透特性及路堤稳定性研究提供理论依据。  相似文献   

16.
为掌握不同含水率下石灰改良黔张常高铁地区红层泥岩的力学特性,对红层泥岩及其石灰改良土进行了击实试验,随后考虑最优含水率和饱和含水率进行了无侧限抗压,CBR,直剪等力学试验,结果表明:随石灰掺量增加,改良红层泥岩的最优含水率逐渐增大,而最大干密度则逐渐减小.石灰对红层泥岩土的强度和承载力有显著改善,但改善效果与红层泥岩土自身的含水率有关.饱和状态下,石灰掺量增加,对CBR值和黏聚力改善的效果越好,但对无侧限抗压强度和内摩擦角改善效果的增幅不如前者明显;最优含水率下,石灰掺量越高,无侧限抗压强度、黏聚力和CBR值逐渐增加,但对内摩擦角的改善效果并不明显,且当石灰掺量超过6%时,其内摩擦角略有减小.最终推荐利用石灰改良黔张常地区红层泥岩时最优掺比为6%.  相似文献   

17.
山区高速公路土石混合体路基填料组成与来源复杂,研究其物理力学性质对路基沉降预测及边坡安全性评定具有重要意义。针对土石混合体路基填料,运用分形几何理论,进行5种不同含石量填料颗粒级配设计,分析颗粒级配评价指标与分维数的相关关系,并对击实后的填料进行破碎率与分维数变化规律研究。结果表明:评价土石混合体填料级配良好与否的两个指标可简化为分维数一个指标,填料级配良好的分维数区间为(2.22,2.631];在含石量相同的情况下,颗粒破碎率随着含水率的增大而增大,对应的分维数也随之增加;当含水率相同时,含石量高的土石混合体填料对应的破碎率更大,含石量大于50%时,填料破碎率与分维数的增加更为显著;破碎率对含水率与含石量变化较为敏感,但含石量的影响程度更大。  相似文献   

18.
《公路》2017,(1)
谷竹高速存在大量绢云母片岩,强度低,易崩解破碎,难压实,矿物成分以绿泥石、云母为主。引入分形理论,计算发现绢云母片岩粒料的分形维数随干湿循环次数增大而增大,最后达到稳定值约2.68。采用分形维数作为填筑利用指标,研究了CBR和回弹模量随分形维数的变化规律,结果表明CBR和回弹模量都随分形维数的增大先增大后减小,在分维数为2.65时分别达到最大值6.3%和35.8 MPa,因此建议碾压时将分维数控制在2.65。由于稳定分维数对应的CBR为3.6%、回弹模量为30.8 MPa,建议绢云母片岩只能用于下路堤的填筑。进行了现场碾压试验,通过分形维数随碾压遍数的关系图确定了松铺厚度为40cm,振动碾压6遍、静压2遍的碾压工艺。  相似文献   

19.
小岛法分析沥青混合料图像中级配颗粒组成的分形特性   总被引:1,自引:0,他引:1  
利用沥青混合料数字图像技术,针对碎石颗粒外观所表现出的轮廓尺寸测定的无标度性和粒径变化所表现出的颗粒间的统计自相似性开展了级配分形特性研究,给出了"小岛法"计算级配颗粒组成的分形维数计算方法,并设计了常见的3种石料4种沥青混合料级配进行试验分析.试验结果表明,采用"小岛法"可以定量描述集料颗粒级配组成的分形特性,不同级配具有不同的分维值,其结果为大于1的数.  相似文献   

20.
膨胀性凝灰岩浸水崩解特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以云南澜沧铅矿凝灰岩为例,选取最具代表性的纯凝灰岩进行室内浸水崩解试验,以分析纯凝灰岩崩解过程中的颗粒级配变化情况。选取崩解物中粒径大于5.00 mm或小于0.28 mm的颗粒含量的变化为评价对象,通过对比分析探究其崩解性能、崩解率与时间、质量的关系。试验研究结果表明:相同质量的凝灰岩随着浸水时间的增加崩解率增大,相同时间下凝灰岩的崩解率随着质量的增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号