首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
Since the transportation sector plays an important role in business cycle propagation, we develop indicators for this sector to identify its current state, and predict its future. We define the reference cycle, including both business and growth cycles, for this sector over the period from 1979 using both the conventional National Bureau of Economic Research (NBER) method and modern time series models. A one-to-one correspondence between cycles in the transportation sector and those in the aggregate economy is found; however, both business and growth cycles of transportation often start earlier and end later than those of the overall economy. We also construct an index of leading indicators for the transportation sector using rigorous statistical procedures, and is found to perform well as a forecasting tool.  相似文献   

2.
ABSTRACT

Automated, connected, electrified, and shared mobility will be cornerstones of the transportation future. Research to quantify the potential benefits and drawbacks of practice, and to identify barriers to adoption, is the first step in any strategic plan for their adoption. However, uncertainties, complexity, interdependence, and the multidisciplinary nature of emerging transportation technologies make it difficult to organize and identify focused research. The contribution of this work is a cognitive framework to help planners and policymakers organize broad topics, reveal challenges, discover ideas for solutions, quantify potential impacts, and identify implications to guide preparation strategies. The authors provide example cognitive frameworks for connected, automated, and electrified vehicles.  相似文献   

3.
Traffic congestion is rapidly increasing in urban areas, particularly in mega cities. To date, there exist a few sensor network based systems to address this problem. However, these techniques are not suitable enough in terms of monitoring an entire transportation system and delivering emergency services when needed. These techniques require real-time data and intelligent ways to quickly determine traffic activity from useful information. In addition, these existing systems and websites on city transportation and travel rely on rating scores for different factors (e.g., safety, low crime rate, cleanliness, etc.). These rating scores are not efficient enough to deliver precise information, whereas reviews or tweets are significant, because they help travelers and transportation administrators to know about each aspect of the city. However, it is difficult for travelers to read, and for transportation systems to process, all reviews and tweets to obtain expressive sentiments regarding the needs of the city. The optimum solution for this kind of problem is analyzing the information available on social network platforms and performing sentiment analysis. On the other hand, crisp ontology-based frameworks cannot extract blurred information from tweets and reviews; therefore, they produce inadequate results. In this regard, this paper proposes fuzzy ontology-based sentiment analysis and semantic web rule language (SWRL) rule-based decision-making to monitor transportation activities (accidents, vehicles, street conditions, traffic volume, etc.) and to make a city-feature polarity map for travelers. This system retrieves reviews and tweets related to city features and transportation activities. The feature opinions are extracted from these retrieved data, and then fuzzy ontology is used to determine the transportation and city-feature polarity. A fuzzy ontology and an intelligent system prototype are developed by using Protégé web ontology language (OWL) and Java, respectively. The experimental results show satisfactory improvement in tweet and review analysis and opinion mining.  相似文献   

4.
Current geographic information systems typically offer limited analytical capabilities and lack the flexibility to support spatial decision making effectively. Spatial decision support systems aim to fill this gap. Following this approach, this paper describes an operational system for integrated land-use and transportation planning called Location Planner. The system integrates a wide variety of spatial models in a flexible and easy-to-use problem solving environment. Users are able to construct a model out of available components and use the model for impact analysis and optimization. Thus, in contrast to existing spatial decision support systems, the proposed system allows users to address a wide range of problems. The paper describes the architecture of the system and an illustrative application. Furthermore, the potentials of the system for land-use and transportation planning are discussed.  相似文献   

5.
ABSTRACT

The advent of the autonomous vehicle (AV) will affect not only the transportation system, but also future patterns of land development. Integrated land use and transportation models will be critical tools in assessing the path forward with this technology. Key questions with respect to land use impacts of AVs arise from potential changes in sensitivity to travel and reduced demand for parking. It is an open question whether AVs will induce urban sprawl, or whether spatial economies of agglomeration will mitigate any reductions in travel time sensitivity. The deployment of shared fleets of AVs would likely reduce parking demand, producing yet to be explored impacts on property development within existing urban footprints. We perform a critical assessment of currently operational models and their ability to represent the adoption of AVs. We identify the representation of time in such models as a vital component requiring additional development to model this new technology. Existing model applications have focused on the discrete addition of new infrastructure or policy at a fixed point in time, whereas AV adoption will occur incrementally through time. Stated adaptation surveys are recommended as tools to quantify preferences and develop relevant model inputs. It is argued that existing models that assume comparatively static equilibrium have been convenient in the past, but are insufficient to model technology adoption. In contrast, dynamic model frameworks lack sufficient structure to maintain reasonability under large perturbations from base conditions. The ongoing advancement of computing has allowed models to move away from being mechanistic aggregate tools, towards behaviourally rich depictions of individual persons and firms. However, much work remains to move from projections of existing conditions into the future, to the evolution of the spatial economy as it evolves through time in response to new technologies and exogenous stresses. Principles from complex and evolutionary systems theory will be important in the development of models with the capacity to consider such dynamics.  相似文献   

6.
Investment in transportation infrastructure is generally regarded as an effective means for inducing economic growth and employment in a region. However, the ability of such investments to achieve these objectives, to a large extent, depends on the degree to which travel results from these investments support or conflict with present travel patterns and needs in this region. Using this view as a basis, this paper analyzes travel conditions and choices in the Bronx New York, where large scale transportation and other development projects (commonly called the Bronx Center Project) are presently taking place. Using a large data base, composed of census tract information on socio-economic and travel behavior, the paper first examines the travel profile of the Bronx population, by estimating travel choice elasticities. On the basis of these elasticities it then assesses the impact of the Bronx Center Project on travel patterns and trends.  相似文献   

7.
The sharing of forecasts is vital to supply chain collaborative transportation management (CTM). Shipment forecasting is fundamental to CTM, and is essential to carrier tactical and operational planning processes such as network planning, routing, scheduling, and fleet planning and assignment. By applying and extending grey forecasting theory, this paper develops a series of shipment forecasting models for supply chain CTM. Grey time-series forecasting and grey systematic forecasting models are developed for shipment forecasting under different collaborative frameworks. This paper also integrates grey numbers with grey models for analyzing shipment forecasting under partial information sharing in CTM frameworks. An example of an integrated circuit (IC) supply chain and relevant data are provided. The proposed models yield more accurate prediction results than regression, autoregressive integrated moving average (ARIMA), and neural network models. Finally, numerical results indicate that as the degree of information sharing increases under CTM, carrier prediction accuracy increases. This paper demonstrates how the proposed forecasting models can be applied to the CTM system and provides the theoretical basis for the forecasting module developed for supply chain CTM.  相似文献   

8.
Travel demand model system for the information era   总被引:5,自引:0,他引:5  
The emergence of new information technologies and recent advances in existing technologies have provided new dimensions for travel demand decisions. In this paper we propose a comprehensive travel demand modeling framework to identify and model the urban development decisions of firms and developers and the mobility, activity and travel decisions of individuals and households, and to develop a system of models that can be used by decision makers and planners to evaluate the effects of changes in the transportation system and development of information technologies (e.g. various tele-commuting, tele-services and Intelligent Transportation Systems).The implementation of an operational model system based on this framework is envisioned as an incremental process starting with the current best practice of disaggregate travel demand model systems. To this end, we present an activity-based model system as the first stage in the development of an operational model system.  相似文献   

9.
We present a statistical process control framework to support structural health monitoring of transportation infrastructure. We contribute an integrated, generally-applicable (to various types of structural response data) statistical approach that links the literatures on statistical performance modeling and on structural health monitoring. The framework consists of two parts: The first, estimation of statistical models to explain, predict, and control for common-cause variation in the data, i.e., changes, including serial dependence, that can be attributed to usual operating conditions. The ensuing standardized innovation series are analyzed in the second part of the framework, which consists of using Shewhart and Memory Control Charts to detect special-cause or unusual events.We apply the framework to analyze strain and displacement data from the monitoring system on the Hurley Bridge (Wisconsin Structure B-26-7). Data were collected from April 1, 2010 to June 29, 2011. Our analysis reveals that, after controlling for seasonal effects, linear trends are significant components of the response measurements. Persistent displacement may be an indication of deterioration of the bridge supports. Trends in the strain data may indicate changes in the material properties, i.e., fatigue, sensor calibration, or traffic loading. The results also show that autocorrelation and conditional heteroscedasticity are significant sources of common-cause variation. Use of the control charts detected 43 possible special-cause events, with approximately 50% displaying persisting effects, and 25% lasting longer than one week. Analysis of traffic data shows that unusually heavy loading is a possible cause of the longest special-cause event, which lasted 11 days.  相似文献   

10.
《运输规划与技术》2012,35(8):777-824
ABSTRACT

In this paper, a fuzzy-stochastic optimization model is developed for an intermodal fleet management system of a large international transportation company. The proposed model integrates various strategic, tactical and operational level decisions simultaneously. Since real-life fleet planning problems may involve different types of uncertainty jointly such as randomness and fuzziness, a hybrid chance-constrained programming and fuzzy interactive resolution-based approach is employed. Therefore, stochastic import/export freight demand and fuzzy transit times, truck/trailer availabilities, the transport capacity of Ro-Ro vessels, bounds on block train services, etc. can also be taken into account concurrently. In addition to minimize overall transportation costs, optimization of total transit times and CO2 emission values are also incorporated in order to provide sustainable fleet plans by maximizing customer satisfaction and environmental considerations. Computational results show that effective and efficient fleet plans can be produced by making use of the proposed optimization model.  相似文献   

11.
为了解决城市共享单车的乱停乱放问题,本文基于北京市的共享单车出行大数据,提出了共享单车停放需求预测的多项Logit模型。首先分析了单车停放需求的影响因素,然后选取了时间、空间及天气方面的12个因素为自变量,通过Wald检验分析了这些因素与停放需求的相关性和显著性,基于多项Logit模型建立了共享单车的停放需求预测模型。结果表明:工作日、时段、商业区、所临道路类型、临近轨交站、高温、下雨、以及风力等级与共享单车停放需求显著相关;构建的预测模型总体预测准确率为77.5%,其中对出现频率最高的低停放需求预测准确率高达86.49%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号