首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1 故障现象 某准自动化驼峰采用微机储存、溜放进路自动控制系统,在作业中,第2分路道岔处发生了车组脱线故障.原因是,前钩车顺利通过第2分路道岔后,道岔本应由定位转向反位,但因前钩车掉下石碴夹在反位尖轨与基本轨间,致使反位不能密贴,道岔自动转回定位.  相似文献   

2.
3.
南仓站下行自动化驼峰,采用FTK-Ⅱ型自动控制系统,自1997年运用以来,分路道岔在有车占用的情况下,于2000和2002年2次发生中途转换,使溜放车辆脱线掉道,造成了严重的经济损失。  相似文献   

4.
驼峰分路道岔是驼峰场溜放及调车作业的关键设备,其控制电路的准确性、稳定性对驼峰场安全作业尤其重要。近年来,铁道部建设管理司、铁道部运输局根据驼峰分路道岔控制电路在全国各个驼峰场的使用情况,针对控制电路存在的不安全因素,对修改方案进行了技术审查,修改后的控制电路拥有了更好的安全保证。但是随着驼峰自动化设备的不断更新和分路道岔快动转辙机的不断改进,对分路道岔控制电路与控制系统和转辙机结合设计的合理性也提出了进一步的要求。[第一段]  相似文献   

5.
6.
驼峰自动集中分路道岔控制电路是确保解体车组在动态溜放过程中,对道岔实施安全控制的重要条件.当道岔失控时,此电路能根据车组当时的溜放情况,为溜放车组提供安全的保护措施.在运营技术条件中明确规定:"峰下自动集中道岔转辙机的机械锁闭装置未解锁,不能构成启动继电器的自保电路.若此时车辆进入道岔轨道区段,应自动切断动作电源和启动继电器电路".但目前的驼峰电动转辙机控制电路(ZD7-A型),在实施上述技术条件过程中尚有不完善之处.例如,电路已工作,表示电路断开,辙岔受阻因故未动,则电机一直在通电状态;当溜放车组压入轨道区段后,因震动等原因卡阻消失,电机转动,延误了转换时机,导致道岔不能按时转换到规定位置,造成道岔在四开状态或发生中途转换.  相似文献   

7.
1故障情况 某站驼峰信号设备,使用TW组态式驼峰自动控制系统,道岔使用ZK3型电空转辙机.2000年6月19日13:03在解体03号车列时(从T2解体),第1钩计划8-8,第2钩计划11-7,第3钩计划14-6.在第3钩溜放至峰下240#道岔所在区段时,计算机屏幕出现蓝色光带,N2楼控制台闪红色光带,挤岔铃响.  相似文献   

8.
9.
10.
以某驼峰场发生的事故为例,分析7021标准自动集中电空道岔控制电路存在的安全隐患,及解决方案。  相似文献   

11.
对ZD7,ZD7-A,ZK3型3种转辙机的技术特性,电路特点,结构及现场维修情况进行了分析,并提出了今后的发展建议。  相似文献   

12.
13.
在驼峰自动溜放作业过程中,车组溜放进路的排列是由道岔集中设备自动完成的.目前,我国驼峰道岔自动集中可分为继电进路控制系统和微机进路控制系统2种类型,虽然二者具体设备迥异,但它们联系密切,进路控制原理是相同的.  相似文献   

14.
第1分路道岔(头岔),是驼峰场的咽喉道岔,在溜放作业中动作频繁,故障率也相应较高.溜放作业前及时发现头岔故障并报警,是保障溜放作业安全,提高运输效率的关键.  相似文献   

15.
合肥东驼峰场峰上平面图如图1,当排列D219至T2的调车进路后,D219开放调车白灯,机车由到达场调至205DG(仅占用205DG)时,203DG解锁。由于203^#岔后无阻挡信号,如机车要从205DG回到达场,只有等D404开放。但D404信号开放不检查203^#道岔位置,故存在严重的安全隐患。  相似文献   

16.
导致车辆在驼峰下小号码脱轨的主要原因是曲线间缺少夹直线,难以保证车辆转向架下2轮对在垂直状态下平稳进入道岔;而增加夹直线,工程费用和用地范围将大大增加。采用改进道岔结构,增设防护轨的方法,不仅有效解决了车辆在驼峰下脱轨问题,而且大大降低了道岔尖轨磨耗的成本支出。通过仿真计算分析,该措施不仅在实践中完全有效,并且有可靠的理论依据。  相似文献   

17.
介绍了驼峰下对称道岔护轨病害产生的原因,提出改造措施及其效果。  相似文献   

18.
提出驼峰峰顶距第一分路道岔的合理距离及加速坡的最大坡度。  相似文献   

19.
浅析三开道岔控制电路设计   总被引:1,自引:1,他引:0  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号