首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
An important function of a bogie of a railway vehicle (or of the running gear of guided vehicles in general) is to guide or steer the vehicle along the course of the track while isolating the vehicle and its payload as well as possible from unintended but inevitable imperfections in the position of the track. Against this background, an analytical expression is derived for the low speed transfer function of a bogie, from which conclusions can be drawn regarding the effect of the elastic connections between wheelsets on dynamic behaviour. At higher speeds inertia effects of the unsprung masses have a negative effect on dynamic behaviour, the magnitude of this effect being different for different types of elastic connections. This is also reflected in the critical speed and the interaction between body and bogie. With respect to the wear of wheels and rails on curved track, the range of radii of curves which can be traversed without flange contact and, for smaller radii, the rate of increase of flange force and angle of attack of the leading wheelset are important factors. Some expressions are derived for the effect of the elastic connections between wheelsets on these factors.  相似文献   

2.
To further increase passenger train comfort and handling performances, a mechatronic approach to the design of railway vehicles is necessary. In fact, active systems on board a railway vehicle allow to push design barriers beyond those encountered with just passive systems. The article deals with the development of an electro-mechanical actuator to improve the running behaviour of a railway vehicle, both in straight track and curve. The main components of the active system are a brushless motor and a mechanical transmission, used to apply a longitudinal force between the carbody and the bogie of the vehicle. The actuator is operated in force control. Different control strategies were developed for straight track running, where the aim is to increase the vehicle critical speed, and for curve negotiation, where the goal is to reduce the maximum values of track shift forces. A mathematical model of the railway vehicle incorporating the active control device has been developed and used to optimise control strategies and hardware set-up of the active device and to estimate the increase in operating performances with respect to a conventional passive vehicle. The active control device has then been mounted on an ETR470 railway vehicle, and its performances have been evaluated during in-line tests in both straight and curved tracks.  相似文献   

3.
This paper deals with the study of running dynamic effects for a partially filled railway tank vehicle. A computational fluid dynamics model in 2D is established and used to define the motion of the sloshing fluid and the forces generated on the tank, for curving conditions typical of railway freight transport. From these results, an equivalent mechanical model is identified which is able to correctly reproduce the forces generated on the tank. Finally, a mathematical model is defined for the entire freight car, including the bogies with primary suspensions, the tank and a discrete number of equivalent models positioned at different places along the longitudinal axis of the tank. This model is used to simulate the dynamics of the tank for a variety of curve geometries, train speeds and fill levels. By these simulations, derailment and rollover risks are evaluated and the most critical conditions for running safety are defined. Results show that sloshing can increase significantly the risk of tank rollover whereas its influence on the risk of derailment is minor.  相似文献   

4.
To further increase passenger train comfort and handling performances, a mechatronic approach to the design of railway vehicles is necessary. In fact, active systems on board a railway vehicle allow to push design barriers beyond those encountered with just passive systems. The article deals with the development of an electro-mechanical actuator to improve the running behaviour of a railway vehicle, both in straight track and curve. The main components of the active system are a brushless motor and a mechanical transmission, used to apply a longitudinal force between the carbody and the bogie of the vehicle. The actuator is operated in force control. Different control strategies were developed for straight track running, where the aim is to increase the vehicle critical speed, and for curve negotiation, where the goal is to reduce the maximum values of track shift forces. A mathematical model of the railway vehicle incorporating the active control device has been developed and used to optimise control strategies and hardware set-up of the active device and to estimate the increase in operating performances with respect to a conventional passive vehicle. The active control device has then been mounted on an ETR470 railway vehicle, and its performances have been evaluated during in-line tests in both straight and curved tracks.  相似文献   

5.
The bodies of many railway freight cars in many countries of the world are coupled to the running gear by means of a body centre plate that makes a friction pair with a centre bowl. During motion, the bogie is rotated and moved with respect to the car body. This leads to wear on the contact surfaces. Lubrication is inexpedient in this case because the friction forces damp the vibrations (so-called bogie hunting) during motion. Usually, centre plates exhibit noticeable wear after two years of operation. Reducing wear requires knowing details of the wear process which, in turn, requires computer simulation of freight car motion for an operation period of 10–15 years. The purpose of this paper is to develop a universal method for wear simulation of friction pairs that could be used, in particular, for the centre plate of a freight car.  相似文献   

6.
7.
8.
铁路重载货车转向架为铁路重载运输提供保障。由于铁路重载货车的重载质量不断增加,运行的速度越来越快速,从而造成了轮轨的损坏,这就需要加强对转向架技术的深入研究。对我国铁路重载货车转向架技术发展的历程进行阐述,详细分析了铁路重载货车转向架技术的应用,并对铁路重载货车转向架的发展趋势进行阐述。  相似文献   

9.
Monitoring vehicle operation conditions has become significantly important in modern high-speed railway systems. However, the operational impact of monitoring the roll angle of vehicle bodies has principally been limited to tilting trains, while few studies have focused on monitoring the running posture of vehicle bodies during operation. We propose a real-time posture monitoring method to fulfil real-time monitoring requirements, by taking rail surfaces and centrelines as detection references. In realising the proposed method, we built a mathematical computational model based on space coordinate transformations to calculate attitude angles of vehicles in operation and vertical and lateral vibration displacements of single measuring points. Moreover, comparison and verification of reliability between system and field results were conducted. Results show that monitoring of the roll angles of car bodies obtained through the system exhibit variation trends similar to those converted from the dynamic deflection of bogie secondary air springs. The monitoring results of two identical conditions were basically the same, highlighting repeatability and good monitoring accuracy. Therefore, our monitoring results were reliable in reflecting posture changes in running railway vehicles.  相似文献   

10.
The railway industry in the UK is currently expanding the use of condition monitoring of railway vehicles. These systems can be used to improve maintenance procedures or could potentially be used to monitor current vehicle running conditions without the use of cost prohibitive sensors. This paper looks at a novel method for the online detection of areas of low adhesion in the wheel/rail contact that cause significant disruption to the running of a network, particularly in the autumn season. The proposed method uses a Kalman–Bucy filter to estimate the creep forces in the wheel–rail contact area; post-processing is then applied to provide information indicative of the actual adhesion level. The algorithm uses data that, in practice, would be available from a set of modest cost inertial sensors mounted on the vehicle bogie and wheel-sets. The efficacy of the approach is demonstrated using simulation data from a nonlinear dynamic model of the vehicle and its track interface.  相似文献   

11.
The extensive usage of railway infrastructure demands a high level of robustness, which can be achieved partly by considering (and managing) the track and rolling stock as one integral system with due attention to their interface. A growing number of infra managers consider, in this framework, the track-friendliness of vehicles that have access to their tracks as a key control parameter. The aim of this study is to provide further insight into potential contributions to track-friendliness, assessed in relation to track deterioration mechanisms and cost, understanding how potential benefits are best to be utilised. Six proposed freight bogie design measures are evaluated with respect to the improvement in curving behaviour, switch negotiation and related track degradation mechanisms. To this purpose a sensitivity analysis has been carried out by means of track–train simulations in the VAMPIRE® multi body simulation software. Additionally, the impact on track deterioration costs has been calculated for those track-friendly design modifications identified as most promising. Conclusions show that the standard Y25L freight bogie design displays rather a track-friendly behaviour. Tuning the primary yaw stiffness shows a high potential to further improve track-friendliness, significantly reducing track deterioration cost at narrow radius curves and switches (by, respectively, 30% and 60%). When calculating the overall deterioration cost for the travelled route, the calculation model should include a well-balanced representation of switches and narrow radius curves.  相似文献   

12.
Train-tram railway vehicles implement the connection between urban tramlines and the surrounding railway network. Train-tram railway vehicles, which use existing infrastructure, can help to avoid large investments in new railways or tramlines and make interchanges between city center and surrounding cities unnecessary. However, present train-tram rail vehicle cannot carry out the integration of operating by means of high speed in intercity railways with operating on small radius of curvature in inner city tramlines. This paper aims to develop a new model for solid wheelsets train-tram railway vehicles, which will not only pass the curve of 25mR radius of curvature traveling on inner city tramlines with the speed of 18 km/h, but also can travel on straight railway with 200 km/h high speed between intercity. In this paper, a new train-tram model, including five car-body and five motor bogies with ten traction motors, is addressed. Expect as a real rail vehicle testing, this study prefer virtual simulation, which is an effective way to show the rail vehicle performance, such as ride stability, ride comfort and ride safety, by means of evaluating the dynamic characteristics of rail vehicle. Moreover, Design of Experiment (DOE) method is used to optimize solid wheelsets bogie system on improving passenger comfort, safety and stability of train-tram. Parameters of components of bogie system are tuned to minimize the derailment coefficient and the ride comfort index. The results shows that the best comfort index for passenger and minimum derailment coefficient are found. The results also show that this optimized new train-tram model is reliable and practical enough to be applied on real rail vehicle design.  相似文献   

13.
A Review of Modelling Methods for Railway Vehicle Suspension Components   总被引:1,自引:0,他引:1  
The dynamic behaviour of railway vehicles has been the subject of study for over a century but the advances in computing technology in the last few years have led to a very rapid development in the use of numerical techniques for solving railway vehicle dynamics problems. As these techniques have developed, and have been applied to ever more complex problems, the modelling of the vehicle components has increased in importance. Mathematical models of railway vehicles may now include components such as swing links, air-springs, trailing arm suspensions, load sensitive friction dampers, rubber bushes with hysteresis etc, all of which require sophisticated modelling techniques to produce accurate results. This paper looks at the developments that have taken place in this area, the background to the need for sophisticated models, the improvements in accuracy that can result and some of the difficulties in applying these techniques to the modelling of real situations.  相似文献   

14.
SUMMARY

The dynamic behaviour of railway vehicles has been the subject of study for over a century but the advances in computing technology in the last few years have led to a very rapid development in the use of numerical techniques for solving railway vehicle dynamics problems. As these techniques have developed, and have been applied to ever more complex problems, the modelling of the vehicle components has increased in importance. Mathematical models of railway vehicles may now include components such as swing links, air-springs, trailing arm suspensions, load sensitive friction dampers, rubber bushes with hysteresis etc, all of which require sophisticated modelling techniques to produce accurate results. This paper looks at the developments that have taken place in this area, the background to the need for sophisticated models, the improvements in accuracy that can result and some of the difficulties in applying these techniques to the modelling of real situations.  相似文献   

15.
In this paper, the collision-induced derailment of freight trains was investigated. The collision between two identical freight trains occurring on a curved path rather than along a straight line was investigated. This is because from the point of view of safety against derailment this collision scenario is thought to be more critical than the scenarios defined in the European standard EN 15227. In this work, one of the trains is stationary and the other moving train collides at 36 km/h. Two kinds of container wagons were simulated. One is the two-axle freight wagon Kls 442. Another is the freight wagon Rmms 662 with two Y25 bogies. Simulation results demonstrate that in terms of safety against derailment the bogie wagon Rmms 662 was found to have better behaviour than the two-axle wagon Kls 442. In addition, this study points out that there are many contributory factors to the responses of freight wagons during a collision, such as curve radius, distance between bogie pivots and loading mass. The derailment phenomenon is less likely to occur, when freight trains collide on the curve with a larger radius. Besides that the characteristics of freight wagons with large axle loads, low centre of gravity of car body and appropriate static strength are favourable for the collided wagons in reducing the risk of derailment.  相似文献   

16.
SUMMARY

The transportation of ore can be made more cost efficient by use of bigger and heavier trains. An increase in axle load is thereby wanted. The fleet of ore wagons of today at Malmbanan/Ofotbanan in northern Sweden and Norway has to be updated. It is of interest to find out if it is possible to allow a higher axle load on the track with new wagons

To be able to understand and predict the effects on track wear depending on what type of vehicle that is in use, the contact forces between wheels and rails have to be determined. A computer aided analysis has been made of the dynamic behaviour of three test vehicles equipped with different types of three-piece bogies running at Malmbanan. The vehicles are modelled and their interaction with the track is analysed using the multibody simulation package GENSYS

The simulations show that, even if the axle load is increased from 25 tons to 30 tons and the velocity is increased from 50 km/h to 60 km/h, it is possible to reduce lateral track forces and wear in curves by using a different bogie than the standard three-piece bogie used today.  相似文献   

17.
The transportation of ore can be made more cost efficient by use of bigger and heavier trains. An increase in axle load is thereby wanted. The fleet of ore wagons of today at Malmbanan/Ofotbanan in northern Sweden and Norway has to be updated. It is of interest to find out if it is possible to allow a higher axle load on the track with new wagons

To be able to understand and predict the effects on track wear depending on what type of vehicle that is in use, the contact forces between wheels and rails have to be determined. A computer aided analysis has been made of the dynamic behaviour of three test vehicles equipped with different types of three-piece bogies running at Malmbanan. The vehicles are modelled and their interaction with the track is analysed using the multibody simulation package GENSYS

The simulations show that, even if the axle load is increased from 25 tons to 30 tons and the velocity is increased from 50 km/h to 60 km/h, it is possible to reduce lateral track forces and wear in curves by using a different bogie than the standard three-piece bogie used today.  相似文献   

18.
Bogie suspension system of high speed trains can significantly affect vehicle performance. Multiobjective optimisation problems are often formulated and solved to find the Pareto optimised values of the suspension components and improve cost efficiency in railway operations from different perspectives. Uncertainties in the design parameters of suspension system can negatively influence the dynamics behaviour of railway vehicles. In this regard, robustness analysis of a bogie dynamics response with respect to uncertainties in the suspension design parameters is considered. A one-car railway vehicle model with 50 degrees of freedom and wear/comfort Pareto optimised values of bogie suspension components is chosen for the analysis. Longitudinal and lateral primary stiffnesses, longitudinal and vertical secondary stiffnesses, as well as yaw damping are considered as five design parameters. The effects of parameter uncertainties on wear, ride comfort, track shift force, stability, and risk of derailment are studied by varying the design parameters around their respective Pareto optimised values according to a lognormal distribution with different coefficient of variations (COVs). The robustness analysis is carried out based on the maximum entropy concept. The multiplicative dimensional reduction method is utilised to simplify the calculation of fractional moments and improve the computational efficiency. The results showed that the dynamics response of the vehicle with wear/comfort Pareto optimised values of bogie suspension is robust against uncertainties in the design parameters and the probability of failure is small for parameter uncertainties with COV up to 0.1.  相似文献   

19.
This paper deals with properties of bogie yaw resistance of an electric locomotive with secondary suspension consisting of flexi-coil springs supplemented with tilting spring pads. Transversal stiffness of a sample of a spring/pad assembly was measured on a dynamic test stand of the University of Pardubice (Czech Republic) and the results were applied into a multi-body model of the locomotive created in the simulation tool ‘SJKV’. On the basis of the simulation results, a detailed analysis of the bogie yaw resistance was performed in order to explain the effect in dynamic behaviour of the locomotive when the moment against bogie rotation (and therefore the distribution of guiding forces on individual wheels, as well) is influenced with the vehicle speed in a certain curve. Results of this analysis show that the application of suspension elements with strongly directionally dependent transversal stiffness into the secondary suspension can just lead to a dependency of the bogie yaw resistance on cant deficiency, i.e. on the vehicle speed in curve. This fact has wide consequences on the vehicle dynamics (especially on the guiding behaviour of the vehicle in curves) and it also points out that the current method of evaluation of the bogie yaw resistance according to relevant standards, which is related with assessment of the quasistatic safety of a railway vehicle against derailment, is not objective enough.  相似文献   

20.
This paper presents the optimisation of damping characteristics in bogie suspensions using a multi-objective optimisation methodology. The damping is investigated and optimised in terms of the resulting performances of a railway vehicle with respect to safety, comfort and wear considerations. A complete multi-body system model describing the railway vehicle dynamics is implemented in commercial software Gensys and used in the optimisation. In complementary optimisation analyses, a reduced and linearised model describing the bogie system dynamics is also utilised. Pareto fronts with respect to safety, comfort and wear objectives are obtained, showing the trade-off behaviour between the objectives. Such trade-off curves are of importance, especially in the design of damping functional components. The results demonstrate that the developed methodology can successfully be used for multi-objective investigations of a railway vehicle within models of different levels of complexity. By introducing optimised passive damping elements in the bogie suspensions, both safety and comfort are improved. In particular, it is noted that the use of optimised passive damping elements can allow for higher train speeds. Finally, adaptive strategies for switching damping parameters with respect to different ride conditions are outlined and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号