首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents an optimisation framework for motorway management via ramp metering and variable speed limit. We start with presenting a centralised global optimal control problem aiming to minimise the total travel delay in a motorway system. Given the centralised global optimal control solutions, we propose a set of decentralised ramp metering and speed control strategies which operate on a novel parsimonious dynamic platform without needing an underlying traffic model. The control strategies are applied to a case on UK M25 motorway. The results show that the proposed set of decentralised control is able to deliver a performance that is close to the global optimal ones with significantly less computational and implementation effort. This study provides new insights to motorway management.  相似文献   

2.
This paper deals with a fair ramp metering problem which takes into account average travel delay distribution among on-ramps for an expressway system comprising expressways, on-ramps and off-ramps. A novel spatial equity index is defined to measure the evenness of travel delay distribution among on-ramps within the predefined on-ramp groups. An ideal fair ramp metering problem therefore aims to find an optimal dynamic ramp metering rate solution that not only minimizes the total system delay, but also maximizes the equity indexes associated to the groups. Some of these objectives, however, contradict with each other, and their Pareto-optimality is explored. The fair ramp metering problem proposed in this paper is formulated as a multiobjective optimization model incorporating a modified cell-transmission model (MCTM) that captures dynamic traffic flow pattern with ramp metering operations. The MCTM then is embedded in the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to solve the multiobjective optimization model. Finally, the Interstate I-210 W expressway-ramp network in the United States is adopted to assess the methodology proposed in this paper.  相似文献   

3.
We study the use of the System Optimum (SO) Dynamic Traffic Assignment (DTA) problem to design optimal traffic flow controls for freeway networks as modeled by the Cell Transmission Model, using variable speed limit, ramp metering, and routing. We consider two optimal control problems: the DTA problem, where turning ratios are part of the control inputs, and the Freeway Network Control (FNC), where turning ratios are instead assigned exogenous parameters. It is known that relaxation of the supply and demand constraints in the cell-based formulations of the DTA problem results in a linear program. However, solutions to the relaxed problem can be infeasible with respect to traffic dynamics. Previous work has shown that such solutions can be made feasible by proper choice of ramp metering and variable speed limit control for specific traffic networks. We extend this procedure to arbitrary networks and provide insight into the structure and robustness of the proposed optimal controllers. For a network consisting only of ordinary, merge, and diverge junctions, where the cells have linear demand functions and affine supply functions with identical slopes, and the cost is the total traffic volume, we show, using the Pontryagin maximum principle, that variable speed limits are not needed in order to achieve optimality in the FNC problem, and ramp metering is sufficient. We also prove bounds on perturbation of the controlled system trajectory in terms of perturbations in initial traffic volume and exogenous inflows. These bounds, which leverage monotonicity properties of the controlled trajectory, are shown to be in close agreement with numerical simulation results.  相似文献   

4.
ABSTRACT

This paper presents a case study of the optimal ALINEA ramp metering system model of a corridor of the metro Atlanta freeway. Based on real-world traffic data, this study estimates the origin-destination matrix for the corridor. Using a stochastic simulation-based optimization framework that combines a micro-simulation model and a genetic algorithm-based optimization module, we determine the optimal parameter values of a combined ALINEA ramp metering system with a queue flush system that minimizes total vehicle travel time. We found that the performance of ramp metering with optimized parameters, which is very sensitive possibly because bottlenecks are correlated, outperforms the no control model with its optimized parameters in terms of reducing total travel time.  相似文献   

5.
The continuously increasing daily traffic congestions on motorway networks around the world call for innovative control measures that would drastically improve the current traffic conditions. Mainstream traffic flow control (MTFC) is proposed as a novel and efficient motorway traffic management tool, and its possible implementation and principal impact on traffic flow efficiency is analysed. Variable speed limits, suitably operated and enforced, is considered as one (out of several possible) way(s) for MTFC realisation, either as a stand-alone measure or in combination with ramp metering. A previously developed, computationally efficient software tool for optimal integrated motorway network traffic control including MTFC is applied to a large-scale motorway ring-road. It is demonstrated via several investigated control scenarios that traffic flow can be substantially improved via MTFC with or without integration with coordinated ramp metering actions.  相似文献   

6.
This article presents a study on freeway networks instrumented with coordinated ramp metering and the ability of such control systems to produce arbitrarily complex congestion patterns within the dynamical limits of the traffic system. The developed method is used to evaluate the potential for an adversary with access to control infrastructure to enact high-level attacks on the underlying freeway system. The attacks are executed using a predictive, coordinated ramp metering controller based on finite-horizon optimal control and multi-objective optimization techniques. The efficacy of the control schemes in carrying out the prescribed attacks is determined via simulations of traffic network models based on the cell transmission model with onramps modeled as queue buffers. Freeway attacks with high-level objectives are presented on two illustrative examples: congestion-on-demand, which aims to create precise, user-specified pockets of congestion, and catch-me-if-you-can, which attempts to aid a fleeing vehicle from pursuant vehicles.  相似文献   

7.
Urban traffic corridors are often controlled by more than one agency. Typically in North America, a state of provincial transportation department controls freeways while another agency at the municipal or city level controls the nearby arterials. While the different segments of the corridor fall under different jurisdictions, traffic and users know no boundaries and expect seamless service. Common lack of coordination amongst those authorities due to lack of means for information exchange and/or possible bureaucratic ‘institutional grid-lock’ could hinder the full potential of technically-possible integrated control. Such institutional gridlock and related lack of timely coordination amongst the different agencies involved can have a direct impact on traffic gridlock. One potential solution to this problem is through integrated automatic control under intelligent transportation systems (ITS). Advancements in ITS and communication technology have the potential to considerably reduce delay and congestion through an array of network-wide traffic control and management strategies that can seamlessly cross-jurisdictional boundaries. Perhaps two of the most promising such control tools for freeway corridors are traffic-responsive ramp metering and/or dynamic traffic diversion possibly using variable message signs (VMS). Technically, the use of these control methods separately might limit their potential usefulness. Therefore, integrated corridor control using ramp metering and VMS diversion simultaneously might be synergetic and beneficial. Motivated by the above problem and potential solution approach, the aim of the research presented in this paper is to develop a self-learning adaptive integrated freeway-arterial corridor control for both recurring and non-recurring congestion. The paper introduces the use of reinforcement learning, an Artificial Intelligence method for machine learning, to provide optimal control using ramp metering and VMS routing in an integrated agent for a freeway-arterial corridor. Reinforcement learning is an approach whereby the control agent directly learns optimal strategies via feedback reward signals from its environment. A simple but powerful reinforcement learning method known as Q-learning is used. Results from an elaborate simulation study on a key corridor in Toronto are very encouraging and discussed in the paper.  相似文献   

8.
A nonlinear model-predictive hierarchical control approach is presented for coordinated ramp metering of freeway networks. The utilized hierarchical structure consists of three layers: the estimation/prediction layer, the optimization layer and the direct control layer. The previously designed optimal control tool AMOC (Advanced Motorway Optimal Control) is incorporated in the second layer while the local feedback control strategy ALINEA is used in the third layer. Simulation results are presented for the Amsterdam ring-road. The proposed approach outperforms uncoordinated local ramp metering and its efficiency approaches the one obtained by an optimal open-loop solution. It is demonstrated that metering of all on-ramps, including freeway-to-freeway intersections, with sufficient ramp storage space leads to the optimal utilization of the available infrastructure.  相似文献   

9.
The precise guidance and control of taxiing aircraft based on four-dimensional trajectories (4DTs) has been recognised as a promising means to ensure safe and efficient airport ground movement in the context of ever growing air traffic demand. In this paper, a systematic approach for online speed profile generation is proposed. The aim is to generate fuel-efficient speed profiles respecting the timing constraints imposed by routing and scheduling, which ensures conflict-free movement of aircraft in the planning stage. The problem is first formulated as a nonlinear optimisation model, which uses a more flexible edge-based speed profile definition. A decomposed solution approach (following the framework of matheuristic) is then proposed to generate feasible speed profiles in real time. The decomposed solution approach reduces the nonlinear optimisation model into three tractable constituent problems. The control point arrival time allocation problem is solved using linear programming. The control point speed allocation problem is solved using particle swarm optimisation. And the complete speed profile between control points is determined using enumeration. Finally, improved speed profiles are generated through further optimisation upon the feasible speed profiles. The effectiveness and advantages of the proposed approach are validated using datasets of real-world airports.  相似文献   

10.
An approach based on cell transmission model (CTM) is proposed to estimate the impact of variable free-flow speeds (FFS) on the performance of a freeway system. Based on the basic CTM, four typical freeway control strategies consisting of non control, local ramp metering, coordinated ramp metering and global control are first formulated. Then the method of adjusting model parameters to the changed free-flow speeds is presented. Among the adjustments, an experimental function based on Fan and Seibold (2014) is proposed to change the jam density. Several useful measures are defined to estimate and compare the performances of different freeways. The following three main observations are obtained from numerical experiments. (a) With the gradually increasing FFS, the throughput of freeway will increase at the beginning and then change to decrease. (b) With the increasing FFS, the average delay of vehicles will decrease at the beginning and then change to increase. (c) A series of free-flow speeds associate with the best performance of freeway. These observations are theoretically analyzed through investigating the location and capacity of bottleneck. Study shows that in general the actual bottleneck capacity will increase at the beginning and then change to decrease with the continually increasing FFS. In view of the positive correlation between traffic delay and bottleneck capacity, the theoretical analysis confirms the numerical observations. The findings of this study can deepen the understanding of freeway systems and help management agents adopt proper measures to improve the performance of the whole system.  相似文献   

11.
The well-known feedback ramp metering algorithm ALINEA can be applied for local ramp metering or included as a key component in a coordinated ramp metering system. ALINEA uses real-time occupancy measurements from the ramp flow merging area that may be at most a few hundred meters downstream of the metered on-ramp nose. In many practical cases, however, bottlenecks with smaller capacities than the merging area may exist further downstream, which suggests using measurements from those downstream bottlenecks. Recent theoretical and simulation studies indicate that ALINEA may lead to poorly damped closed-loop behavior in this case, but PI-ALINEA, a suitable Proportional-Integral (PI) extension of ALINEA, can lead to satisfactory control performance. This paper addresses the same local ramp-metering problem in the presence of far-downstream bottlenecks, with a particular focus on the employment of PI-ALINEA to tackle three distinct cases of bottleneck that may often be encountered in practice: (1) an uphill case; (2) a lane-drop case; and (3) an un-controlled downstream on-ramp case. Extensive simulation studies are conducted on the basis of a macroscopic traffic flow model to show that ALINEA is not capable of carrying out ramp metering in these bottleneck cases, while PI-ALINEA operates satisfactorily in all cases. A field application example of PI-ALINEA is also reported with regard to a real case of far downstream bottlenecks. With its control parameters appropriately tuned beforehand, PI-ALINEA is found to be universally applicable, with little fine-tuning required for field applications.  相似文献   

12.
Ramp metering (RM) is the most direct and efficient tool for the motorway traffic flow management. However, because of the usually short length of the on-ramps, RM is typically deactivated to avoid interference of the created ramp queue with adjacent street traffic. By the integration of local RM with mainstream traffic flow control (MTFC) enabled via variable speed limits (VSL), control operation upstream of active bottlenecks could be continued even if the on-ramp is full or if the RM lower bound has been reached. Such integration is proposed via the extension of an existing local cascade feedback controller for MTFC-VSL by use of a split-range-like scheme that allows different control periods for RM and MTFC-VSL. The new integrated controller remains simple yet efficient and suitable for field implementation. The controller is evaluated in simulation for a real motorway infrastructure (a ring-road) fed with real (measured) demands and compared to stand-alone RM or MTFC-VSL, both with feedback and optimal control results. The controller’s performance is shown to meet the specifications and to approach the optimal control results for the investigated scenario.  相似文献   

13.
Ramp metering has emerged as an effective freeway control measure to ensure efficient freeway operations. A number of algorithms have been developed in recent years to ensure an effective use of ramp metering. As the performance of ramp metering depends on various factors (e.g. traffic volume, downstream traffic conditions, queue override policy etc), these algorithms should be evaluated under a wide range of traffic conditions to check their applicability and performance and to ensure their successful implementation. In view of the expenses of and confounding effects in field testing, simulation plays an important role in the evaluation of such algorithms. This paper presents an evaluation study of two ramp metering algorithms: ALINEA and FLOW. ALINEA is a local control algorithm and FLOW is an area wide coordinated algorithm. The purpose of the study is to use microscopic simulation to evaluate systematically how the level of traffic demand, queue spillback handling policy and downstream bottleneck conditions affect the performance of the algorithms. It is believed that these variables have complex interactions with ramp metering. MITSIM microscopic traffic simulator is used to perform the empirical study. The study consists of two stages. In the first stage, key input parameters for the algorithms were identified and calibrated. The calibrated parameters were then used for the second stage, where the performance of the algorithms were compared with respect to three traffic variables mentioned above using an orthogonal fraction of experiments. Regression analysis was used to identify the impacts of some of the interactions among experimental factors on the algorithms' performance, which is not otherwise possible with a tabular analysis. These results provide insights which may be helpful for design and calibration of more efficient ramp control algorithms.  相似文献   

14.
This study evaluates the expected benefits of using the ALINEA ramp metering algorithm as a method for real-time safety improvement on an urban freeway. The objective of this research is to use ramp metering to produce a significant decrease in the risk of crashes on the freeway while avoiding any significant adverse effects on operation. This is achieved by simulating the freeway during the congested period in micro-simulation and testing various ramp metering configurations to determine which provides the best results. Statistical measures developed for the same stretch of freeway using loop detector data are used to quantify the risk of crashes as well as the benefits in each of the alternative strategies. The study concludes that there are significant benefits in metering multiple ramps when the feedback ramp metering algorithm is implemented at multiple locations. It was found that increasing the number of metered on-ramps produces increasing safety benefits. Also, a shorter cycle length for each of the meters and a higher critical occupancy value leads to better results.  相似文献   

15.
This study aims to determine whether ramp meters increase the capacity of active freeway bottlenecks. The traffic flow characteristics at 27 active bottlenecks in the Twin Cities have been studied for seven weeks without ramp metering and seven weeks with ramp metering. A methodology for systematically identifying active freeway bottlenecks in a metropolitan area is proposed, which relies on two occupancy threshold values and is compared to an established diagnostic method – transformed cumulative count curves. A series of hypotheses regarding the relationships between ramp metering and the capacity of active bottlenecks are developed and tested against empirical traffic data. It is found that meters increase the bottleneck capacity by postponing and sometimes eliminating bottleneck activations, accommodating higher flows during the pre-queue transition period, and increasing queue discharge flow rates after breakdown. Results also suggest that flow drops after breakdown and the percentage flow drops at various bottlenecks follow a normal distribution. The implications of these findings on the design of efficient ramp control strategies, as well as future research directions, are discussed.  相似文献   

16.
The Advanced Motorway Optimal Control (AMOC) strategy for optimal freeway network-wide ramp metering is applied to the ring-road of Amsterdam, The Netherlands, in the aim of investigating some important and interesting problems arising in ubiquitous ramp metering systems. A number of suitably chosen scenarios along with a thorough analysis, interpretation, and suitable visualization of the obtained results provide a basis for the better understanding of some complex interrelationships of competing performance criteria. More precisely, the strategy’s efficiency and equity properties as well as their trade-off are studied and their partially competitive behaviour is discussed. This trade-off is implicitly addressed by the AMOC strategy through consideration of the available ramp storage space and may be used as a tool to establish a desired policy of the system’s efficiency versus equity.  相似文献   

17.
A widespread deployment of vehicle automation and communication systems (VACS) is expected in the next years. This may lead to improvements in traffic management efficiency because of the novel possibilities of using VACS both as sensors and as actuators, as well as of a variety of new communications channels (vehicle-to-vehicles, vehicle-to-infrastructure) and related opportunities. To achieve this traffic flow efficiency, appropriate studies, developing potential control strategies to exploit the VACS availability, are essential. This paper describes a hierarchical model predictive control framework that can be used for the coordinated and integrated control of a motorway system, considering that an amount of vehicles are equipped with specific VACS. The concept employs and exploits the synergistic (integrated) action of a number of old and new control measures, including ramp metering, vehicle speed control, and lane changing control at a macroscopic level. The effectiveness and the computational feasibility of the proposed approach are demonstrated via microscopic simulation for a variety of penetration rates of equipped vehicles.  相似文献   

18.
Traffic metering offers great potential to reduce congestion and enhance network performance in oversaturated urban street networks. This paper presents an optimization program for dynamic traffic metering in urban street networks based on the Cell Transmission Model (CTM). We have formulated the problem as a Mixed-Integer Linear Program (MILP) capable of metering traffic at network gates with given signal timing parameters at signalized intersections. Due to the complexities of the MILP model, we have developed a novel and efficient solution approach that solves the problem by converting the MILP to a linear program and several CTM simulation runs. The solution algorithm is applied to two case studies under different conditions. The proposed solution technique finds solutions that have a maximum gap of 1% of the true optimal solution and guarantee the maximum throughput by keeping some vehicles at network gates and only allowing enough vehicles to enter the network to prevent gridlocks. This is confirmed by comparing the case studies with and without traffic metering. The results in an adapted real-world case study network show that traffic metering can increase network throughput by 4.9–38.9% and enhance network performance.  相似文献   

19.
A coordinated, feedback ramp metering strategy is derived for the southern part of Boulevard Périphérique in Paris. The derivation is based on well-known methods of Automatic Control theory (Linear Quadratic Optimisation) using a linearized version of a nonlinear macroscopic traffic flow model presented in a preceding paper. Efficiency of the presented strategy is tested and compared to no control, fixed-time control, and local feedback control on the basis of simulation investigations.  相似文献   

20.
Continuous descent operations with controlled times of arrival at one or several metering fixes could enable environmentally friendly procedures without compromising terminal airspace capacity. This paper focuses on controlled time of arrival updates once the descent has been already initiated, assessing the feasible time window (and associated fuel consumption) of continuous descent operations requiring neither thrust nor speed-brake usage along the whole descent (i.e. only elevator control is used to achieve different metering times). Based on previous works, an optimal control problem is formulated and numerically solved. The earliest and latest times of arrival at the initial approach fix have been computed for the descent of an Airbus A320 under different scenarios, considering the potential altitudes and distances to go when receiving the controlled time of arrival update. The effects of the aircraft mass, initial speed, longitudinal wind and position of the initial approach fix on the time window have been also investigated. Results show that time windows about three minutes could be achieved for certain conditions, and that there is a trade-off between robustness facing controlled time of arrival updates during the descent and fuel consumption. Interestingly, minimum fuel trajectories almost correspond to those of minimum time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号