首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
基于标准κ—ε双方程湍流模型,分析运行在跨峡谷桥梁上的列车外部稳态流场,研究不同峡谷间距、列车在桥上不同位置时峡谷风对列车气动性能的影响规律。计算结果表明:在同样风速条件下,峡谷间距越小,对气流的加速作用越明显,当峡谷间距分别为150,200,250和300m时,桥梁上方的风速分别增加了17.5%,11.6%,7.2%和3.4%;峡谷间距150m时车辆受到的侧向力、升力和倾覆力矩比300m时分别增大约25.7%,84.5%和21.1%;列车处于峡谷中间位置时受到的气动力最小,列车处于刚进入峡谷位置时受到的气动力最大,后者比前者车辆受到的侧向力、升力和倾覆力矩分别增大了5.5%,8.2%和7.8%。  相似文献   

2.
强横风下青藏线棚车气动性能研究   总被引:5,自引:2,他引:3  
采用非结构网格,对强横风下青藏线桥梁上运行的棚车气动性能进行数值模拟,并对部分数值模拟的结果进行风洞实验验证。计算结果表明:实验结果和数值模拟的结果较吻合;在指数风条件下,棚车的气动力随桥梁高度和横风速度的增加而迅速增加;而列车的减速运行,将使棚车所受到的气动力和倾覆力矩降低,有助于棚车安全通过风区桥梁。  相似文献   

3.
项叶琴 《上海铁道科技》2011,(3):109-110,116
基于三维、定常、不可压缩N-S方程及k-ε双方程湍流模型,采用数值模拟计算方法分别对高速列车CRH1在不同侧风风速、不同风向角工况下的气动性能进行模拟。研究结果表明:对于不同横风风速,车辆的横向力、升力及倾覆力矩均随着横风风速的增大而增大,但其对应的气动力系数基本保持不变;对于不同风向角,车辆的横向力、升力及倾覆力矩均随着风向角的增大而增大,风向角为75°时,气动力增长率变缓,对应的气动力系数变化与之一致。  相似文献   

4.
为了研究非定常气动力荷载对桥上列车行车安全性和舒适性的影响,结合有限元软件ANSYS和多体动力学软件SIMPACK,建立列车-轨道-桥梁三维多体系统模型,计算风-列车-桥梁耦合系统的动力响应;对比分析定常与非定常气动力荷载作用下桥上列车的行驶安全与舒适性,研究非定常气动力荷载作用下不同横向风速对列车行驶安全的影响。研究结果表明:列车行驶速度为200~300km/h,无风荷载情况下,各安全性与舒适性指标值均满足要求且均小于风荷载作用。横风作用下平均风速为20 m/s,考虑非定常气动力荷载的影响不仅会使列车行驶安全评估结果更安全,还会使列车舒适性评估结果偏于保守。平均风速不超过20 m/s,车速控制在250 km/h,桥上列车行车安全、舒适性均满足要求,且平稳性等级可达到"良好"以上。通过对不同横向风速下桥上列车行驶安全分析,给出桥上列车安全行驶的阈值,为列车的安全运营提供依据。  相似文献   

5.
以南京大胜关长江大桥地铁搭载段为研究背景,通过风洞试验,探究不同风攻角、列车位置及附属设施状态下地铁列车气动力系数变化规律,进而揭示地铁列车气动特性对列车运行稳定性影响的规律。研究结果表明:风攻角对双线在轨列车稳定性影响更大;当桥梁无附属设施,风攻角的增大不利于迎风侧列车稳定性,双线在轨列车比单线在轨列车更稳定;当桥梁有附属设施,且列车位于边跨时,风攻角越大迎风侧列车越稳定,而背风侧列车则相反,当列车在中跨运行时,列车侧向力及侧向倾覆力矩系数大于边跨,而升力系数小于边跨,表明桥梁桁架改善了列车的抗倾覆性能;桥上增加附属设施后,列车的侧向力及侧向倾覆力矩系数降低,表明附属设施有一定的格挡作用。  相似文献   

6.
不同风向角和地面条件下的列车空气动力性能分析   总被引:1,自引:0,他引:1  
高速列车大都采用电动车组的方式,轴重越来越轻,在强横风中极有可能造成车辆的倾覆。而在不同风向角和地面条件下列车的气动性能也会发生变化。采用大型流场计算软件FLUENT6.0 对列车在不同风向角下的气动力系数进行了计算,分别对列车在平坦路面上、路堤上以及桥梁上3种情况进行了数值模拟。计算结果表明:头车在平地上受到的侧滚力矩较大,而中间车在桥梁上受到的侧滚力矩较大。  相似文献   

7.
路堤上运行的高速列车在侧风下的流场结构及气动性能   总被引:4,自引:0,他引:4  
强侧风产生的气动力时高速列车的运行安全性有显著的影响。基于三维、定常、不可压N-S方程以及k-ε双方程湍流模型,采用有限体积法,对侧风作用下路堤上运行的高速列车进行数值模拟计算,所模拟的列车时速达350 km。通过分析侧风条件下列车周围的流场结构,得到了风速、车速与气动力之间的变化关系。研究结果表明,尽管所计算的列车外表几何形状简单,但其流场仍然非常复杂,列车背风侧将产生数个漩涡,漩涡的位置随车速、风速发生变化。车辆气动力随风速、车速的增加而逐渐增大。头车所受倾覆力矩最大,且其增长率也最大。  相似文献   

8.
应用计算流体动力学仿真获得了高速列车在3种典型横风环境下车体所受定常气动力,然后运用车辆多体动力学分析软件,对高速列车在通过曲线过程中所受横风下具有定常特性的气动力作用对其行驶安全性的影响进行了研究,确定了典型大风环境下处于危险状态的车轮,并通过试验设计方法,得出气动力6分力中气动升力和侧滚力矩对高速列车行驶安全性的影响最大.  相似文献   

9.
采用数值模拟方法对公铁平层超宽流线形钢箱梁上列车与主梁的气动力特性进行了分析.测试了车桥组合下列车与桥梁的平均气动力系数,讨论了风攻角、列车位置对列车气动力的影响;研究了列车及主梁的二维气动导纳.结果表明:列车位于迎风侧(Ⅰ车道)时离桥梁前缘较近,直接受来流风作用,列车的阻力系数比位于其他车道时偏大;列车位于背风侧(Ⅱ...  相似文献   

10.
采用数值模拟方法计算横风下高速列车的气动力及力矩系数,利用EN14067的五质量模型研究横风下车辆临界倾覆风速曲线及不同参数对其倾覆的影响。研究结果表明:临界倾覆风速随着车速的增大而减小,随着风向角的增大先减小后增大,最小值在80°左右时出现,且随着未平衡横向加速度增大而减小。五质量模型中增加考虑的点头力矩和摇头力矩对临界倾覆风速有一定影响,其中若不考虑点头力矩,设置车辆临界风速限制时偏高,对于车辆运行安全性有不利影响。一系悬挂和二系横向刚度对倾覆系数影响不大。随着二系垂向刚度增加,前转向架轮对倾覆系数减小,后转向架增大。横向止挡间隙增大前后倾覆系数均增大。当抗侧滚扭杆减小到原值60%以上时倾覆系数略有增大,幅度不超过10%。车辆质心越偏向车辆前端时,前倾覆系数增加,后倾覆系数减小。  相似文献   

11.
横风下高速列车非定常空气动力特性研究   总被引:5,自引:3,他引:2  
通过大涡模拟(LES)数值计算方法,对均匀定常横风下高速列车的非定常空气动力特性进行了研究。计算得到横风下列车车体所受空气动力的时域及频域特性、列车周围非定常流动结构及相应非定常流场特性。对计算结果分析表明,即使在均匀定常横风下,列车所受空气动力也存在明显的非定常性。对于所研究车型,这种非定常空气动力的特征频率出现在11 Hz以下,并且主要峰值集中在0~3 Hz区间,这与列车系统本身的固有振动模态频率接近,存在横风引起列车系统共振,进而发生列车倾覆的可能;同时研究表明,横风下列车周围流场非定常特性与列车所受非定常空气动力特性在频域中存在对应关系,可以通过测量非定常流场确定列车非定常空气动力特性。  相似文献   

12.
车桥系统气动特性的节段模型风洞试验研究   总被引:3,自引:1,他引:2  
侧向风作用下的车桥耦合振动分析需要考虑相互气动影响的车辆和桥梁各自的气动参数。为考虑车辆和桥梁的相互气动影响,在常规桥梁节段模型三分力测试装置的基础上研制了一种三分力分离装置———交叉滑槽系统。该系统利用环形滑槽和直线滑槽交叉点位置的变化来调整车辆和桥梁间的相对几何关系,并能实现车桥系统的同轴转动,从而方便地进行不同攻角情况下气动力的测试。利用交叉滑槽系统通过节段模型风洞试验对车桥系统的气动特性进行了多工况对比研究,讨论了车桥系统的雷诺数效应,分析了车桥间的相互气动作用,比较了车辆在桥上位置的影响。试验结果表明,基于交叉滑槽系统的节段模型风洞试验测试是可行的;车桥间的相互气动作用对车辆和桥梁的气动力有较明显的影响。  相似文献   

13.
列车经过大风环境时引起的列车稳定性变化影响列车行车安全与乘坐舒适性。优化列车横断面可以提高列车在横风作用下气动性能,降低倾覆危险。借助数值模拟手段,通过优化截面内倾角位置高度等7个几何参数,得到倾覆力矩随参数变化的规律,确定优化中需重点关注的参数。研究结果表明,倾覆力矩随顶部折角与底部折角的变化为非单调增长,而随其他部位的变化呈现单调趋势,优化得到的组合截面比原始截面横向力下降28. 28%、升力大小下降42. 85%、倾覆力矩减小45. 91%。优化后的列车横截面模型与原始断面相比,横向力增长了24. 28%,升力和倾覆力矩分别下降了75. 99%和27. 19%。倾斜条件下,优化后的列车截面模型倾覆力矩较原车模型下降了11. 22%。  相似文献   

14.
强侧风对高速列车运行安全性影响研究   总被引:18,自引:3,他引:15  
在列车空气动力学和系统动力学相结合的基础上完成了相关研究工作。论文首先在研究列车受侧向风力的气动力特性基础上,利用流体力学计算软件FLUENT进行数值计算,得到不同侧风风速和列车车速下作用于车体的侧风载荷值;接着,利用所建立的高速列车动力学模型,将得到的风载荷值作为外加载荷作用于列车,研究了侧向风速对直线运行列车运行安全性的影响特性;最后,参照高速列车运行安全性相关限定标准,提出不同侧风风速下高速列车的最高安全运行速度,为特殊风环境下我国时速200 km/h及以上动车组安全运行提供理论依据。  相似文献   

15.
杭州钱江铁路新桥是沪杭甬客运专线和杭长客运专线跨越钱塘江干流的客运专线连续梁桥,该桥桥面宽、跨度大、单联跨数多长度大,结构受力纵横向均较复杂,空间效应极其明显,其关键技术设计需要得到重视与研究。结合杭州钱江铁路新桥有限元模型及车桥耦合动力分析,对剪力滞效应、偏载系数效应、抗震及减震措施、大位移伸缩缝、车桥耦合振动等关键技术问题进行了研究。活载偏载下剪力滞效应显著,正应力与扭转剪应力偏载系数存在差异,黏滞性阻尼可有效减少制动墩顺桥向水平地震力和面内弯矩,TW450型伸缩装置可满足梁端伸缩大位移要求,设计列车运行速度范围内桥梁与车辆动力响应满足要求。  相似文献   

16.
将空气流场视为黏性、可压缩的非定常流,对高速列车和跨线桥梁模型进行适当简化,以沪昆线上某(112+80+32)m预应力混凝土独塔斜拉桥为例,基于大型计算流体力学软件Fluent,采用滑移网格法建立高速列车和跨线斜拉桥流场计算模型。分析了列车以350km/h速度从斜交跨线斜拉桥下穿过时,桥梁底面压强分布情况。通过积分换算出列车气动效应对桥梁产生升力、阻力和扭矩时程。将该气动力时程施加至斜拉桥空间动力模型,研究运营阶段斜拉桥动力响应。研究表明,高速列车尾流对斜拉桥的气动力作用大于列车头,列车正上方梁体所受气动力最大;列车风对运营阶段斜拉桥影响极小,可忽略不计;若跨线桥为质量惯性较小的钢桥,列车气动力对其影响仍需进行相应研究。  相似文献   

17.
高速铁路桥上无缝线路纵向附加力研究   总被引:9,自引:0,他引:9  
采用实体单元模拟桥梁及桥梁墩台、空间梁单元模拟钢轨、弹簧单元模拟桥梁与墩台及轨道之间的连接,建立梁—轨纵向相互作用三维有限元空间力学模型。以丰沙线永定河单线铁路桥梁、秦沈线沙河双线铁路桥梁对其进行计算验证。以秦沈客运专线32 m多跨双线整孔简支箱型梁桥为例进行纵向力分析,研究结果表明:列车在桥上双线对开,钢轨挠曲附加力有明显增大;列车在桥上单线制动,四根钢轨的制动附加力有较大的差别;列车在桥上双线对向制动,相比单线制动,钢轨制动附加力有一定程度增大,但增大得并不多。  相似文献   

18.
横风作用下的风—车—桥耦合系统的振动分析需要准确识别车辆和桥梁气动参数。基于CFD数值仿真平台分别建立了桥梁单体模型和车桥耦合体系模型,计算分析了高低紊流度风场中不同风攻角下车辆和桥梁的静气动力,分析研究了静止车辆对桥梁静气动力的影响、风攻角对车辆静气动力的影响以及风场的紊流性对车桥静气动力的影响。计算结果表明:由于车辆的干扰,不同风攻角下的桥梁静气动力普遍增大;风攻角对车辆静气动力系数影响比较大;紊流特性对车辆静气动力系数有一定影响,对桥梁静气动力系数影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号