首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地震作用下高速列车-线路-桥梁系统动力响应   总被引:4,自引:0,他引:4  
为分析地震对高速列车通过桥梁时行车安全性的影响,基于高速铁路列车-线路-桥梁动力相互作用理论,建立了考虑地震输入的高速列车-线路-桥梁耦合动力学模型.以跨度32 m的简支箱梁桥和双块式无砟轨道为研究对象,对地震作用下高速列车通过桥梁时系统的动力响应进行了数值计算.结果表明:地震对高速列车-线路-桥梁系统动力响应的影响明显,对桥梁横向振动响应的影响大于对竖向振动响应的影响;地震会降低高速列车通过桥梁时的行车安全性和运行平稳性———在水平1.0 m/s2,竖向0.5 m/s2的规格化El Centro地震波作用下,当列车运行速度超过250 km/h时,轮重减载率超过了安全限值;当列车运行速度达300 km/h时,脱轨系数超过了安全限值.因此,评判地震作用下高速列车通过桥梁时的行车安全性,应考虑行车速度的影响.  相似文献   

2.
为探讨行波效应对地震作用下高速铁路桥上列车行车安全性的影响,基于列车-轨道-桥梁动力相互作用理论,采用35个自由度的机车车辆模型、板式无砟轨道模型和桥梁有限元模型,通过引入地震多点激励模式,建立了非一致地震激励下的列车-轨道-桥梁耦合振动模型,并编制了相应的仿真分析程序.以跨度32 m的简支梁桥为例,输入El Centro地震波,计算了一致激励和行波激励下车桥系统的动力响应.结果表明:行波效应对耦合系统动力响应幅值的影响很大.当车速为350 km/h、行波速度为300 m/s时的脱轨系数、轮重减载率和轮轨横向力比一致激励分别降低84.1%、19.5%和87.8%.因此,忽略行波效应可能造成对地震时桥上列车行车安全的误判.   相似文献   

3.
考虑桩土相互作用的车-轨-桥系统地震响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
弄清桩土相互作用对车桥系统地震响应的影响对于研究地震引起的高速铁路桥上列车行车安全问题十分必要. 基于列车-轨道-桥梁耦合振动理论,采用Winkler地基梁模拟群桩基础并通过m法计算弹簧参数,建立了地震作用下的列车-轨道-桥梁-群桩耦合振动模型,并编制了仿真分析程序. 以某(88 + 168 + 88)m预应力混凝土连续刚构桥为例,分别建立了考虑桩土相互作用的群桩基础模型以及作为对比的刚性基础模型和弹性基础模型,通过输入3条典型地震波,计算对比了3种模型的耦合振动响应,研究了桩土相互作用的影响. 结果表明:地震作用下桩土相互作用对桥梁、轨道和列车子系统动力响应的影响横向大于竖向,且对桥梁、轨道子系统动力响应的影响大于列车子系统;对于本文的计算条件,不考虑桩土相互作用会使桥梁、轨道和列车子系统的动力响应偏小,其中列车的脱轨系数、轮重减载率和轮轴横向力平均值分别偏小5.8%、8.6%和9.0%;桩土相互作用对列车行车安全性指标的影响不会随车速的变化而变化. 本文的研究成果可为震区高速铁路桥梁的抗震设计提供参考.   相似文献   

4.
针对平潭海峡大桥所处海洋环境复杂恶劣、波浪会影响列车的安全性和舒适性问题,基于车-桥耦合动力仿真方法,利用自主研发的桥梁有限元软件BANSYS(bridge analysis system),分析了极端波浪荷载作用下车辆和桥梁的动力响应,讨论了波浪荷载重现期、车速、水深和桥墩刚度等因素的影响.研究结果表明:波浪荷载对车桥系统的响应影响显著,当波浪荷载重现期为50 a时,桥梁跨中横向位移超限;当波浪荷载较大时,波浪对列车走行性起主要控制作用,当波浪荷载较小时,车桥系统的动力响应对车速较为敏感;低桩承台方案可有效降低波浪荷载作用下桥梁和车辆的动力响应;桥墩基础采用常用的不同标号的混凝土对行车安全性和舒适性影响较小,车辆最大横向加速度相对变化幅值最高达3%.  相似文献   

5.
为了探究地震对高速列车和桥梁的影响,建立车辆-桥梁空间耦合系统模型。将规格化的地震波作为激励,同时考虑轨道随机不平顺的影响。采用新型显式积分法求解系统方程。分析不同烈度地震作用下车桥耦合系统的动力响应。数值结果表明,地震烈度在桥梁的抗震设防烈度范围内时,桥梁的振动加速度和挠度响应均符合规范的限值要求。车辆运行平稳性的Sperling指标相对加速度指标较为宽松,当地震烈度为7度及以上时,车辆已不能平稳地运行于桥梁之上。在相对较弱的地震作用下,轨道随机不平顺对桥梁的垂向加速度响应影响明显,不应忽略。  相似文献   

6.
芜湖长江大桥主跨斜拉桥列车走行安全性与舒适性   总被引:4,自引:0,他引:4  
基于合理的列车走行安全性和舒适性评价指标 ,针对芜湖长江大桥主跨 1 80 3 1 2 1 80 m斜拉桥 ,采用空间杆系单元建立了桥梁的有限元模型 ,分析了桥梁的空间自振特性 ,运用文献 [1 ]提出的车桥耦合动力分析理论与方法 ,计算了桥梁在实际运营列车荷载作用下的车桥动力响应 ,对列车通过桥梁时的走行安全性与舒适性进行了详细分析。研究结果表明 ,尽管该斜拉桥在设计荷载下(中—活载 )的挠跨比达 1 /5 87,列车通过桥梁时的舒适性与安全性仍能满足要求。  相似文献   

7.
高速铁路车桥系统横向振动研究   总被引:2,自引:0,他引:2  
以车桥系统横向动力平衡方程为基础,分析了列车在地面线路上运行以及列车通过桥梁时列车横向动力响应的变化;并改变桥墩刚度,计算比较了桥墩刚度变化对车桥系统横向振动的影响。  相似文献   

8.
以某大跨连续梁拱桥为研究对象,利用有限元软件ANSYS建立了该桥的3D动力分析模型,高速列车以质量-弹簧-阻尼模拟为多体系统,对高速列车作用下大跨连续梁拱桥的车桥动力响应进行了仿真分析;在此基础上,探讨了不同列车参数对桥梁的动力响应影响。分析表明:在高速列车激励下,连续梁拱桥的最大动态响应均发生在列车行驶至各跨跨中附近时;列车速度对桥梁动力响应的影响较大,而列车弹簧刚度对桥梁动力响应的影响相对较小。  相似文献   

9.
京沪高速南京越江钢斜拉桥车桥耦合振动分析   总被引:7,自引:1,他引:6  
运用桥梁结构动力不写车辆动力学的研究方法,将车桥作为联合动力体系,以京沪高速铁路南京越江方案我钢斜拉桥为研究对象,进行了高速列车过桥时的车桥空间耦合振动响应分析,着重研究了列车速度变化时对桥梁的挠度,车辆舒适度及脱轨安全度的影响。  相似文献   

10.
铁路斜拉桥的地震响应特性研究   总被引:4,自引:0,他引:4  
通过对典型铁路斜拉桥在地震作用下的响应分析,研究了斜拉桥这种适用跨度大、空间受力性能优越的桥型的抗震性能。结果表明,影响斜拉桥在地震作用下的响应特性及桥上运行列车稳定性和安全性的因素主要是桥、车的动力特性及输入地震激励的物理特性。  相似文献   

11.
在横向风荷载的作用下,桥梁会产生风荷载本身引起的动力响应,且风荷载会对车桥系统耦合振动起到激励作用,使车桥系统的动力响应明显增大。结合工程实例,把车、桥、风作为一个整体耦合振动系统,车辆荷载采用随机车流分布荷载,对车桥系统在风速不相等的风速场里的振动响应进行分析与评价,并对桥上汽车进行了动力响应分析和评价。  相似文献   

12.
风荷载-列车-大跨度桥梁系统非线性耦合振动分析   总被引:1,自引:0,他引:1  
考虑桥梁结构的几何非线性因素,建立了风-列车-桥梁系统耦合振动分析模型.以某大跨度钢桁梁桥为例,计算了静风及脉动风荷载的不同作用效应、风速及车速变化对桥梁位移极值的影响及桥梁几何非线性因素对结构分析的影响.结果表明,进行车桥耦合振动分析时要综合考虑风荷载的动力作用,风速及车速变化对桥梁位移极值均有较大影响,桥梁的线性及非线性位移时程曲线存在明显区别.  相似文献   

13.
大跨度公轨合用斜拉桥在横向风荷载的作用下会加大车辆冲击荷载等动荷载的动力响应,产生较为明显的变形和振动,从而影响到桥梁结构安全、桥上行车安全和旅客乘坐舒适度。主要针对列车-汽车-桥梁-风进行耦合动力学分析,研究耦合体系中桥梁、公路汽车和轨道列车振动响应并开展评价。  相似文献   

14.
为确定适合400 km/h高速铁路的荷载图式,参考《京沪高速铁路设计暂行规定》中确定0.8UIC荷载作为高速铁路列车荷载图式所使用的方法,以包络德国ICE列车、中国ZGS和中速列车的换算均布活载动效应为原则,提出将0.65UIC荷载作为400 km/h高速铁路列车荷载图式;然后,在时速400公里高速列车作用下,对24、32、40 m 3种跨度简支梁桥,基于车桥耦合振动分析方法得到车辆动力响应,在此基础上研究动力系数、竖向挠度、梁端竖向转角和轨面不平顺等现行规范指标在0.65UIC荷载条件下的适应性;最后,讨论采用0.65UIC荷载作为设计荷载时,离心力、牵引力和制动力限值对400 km/h高速铁路列车的适应性.结果表明:在现行规范基础上,将0.65UIC荷载作为400 km/h高速铁路列车荷载图式进行桥梁设计是可行的,采用该荷载图式计算的桥梁设计指标限值和设计荷载限值较运营车辆与桥梁间的响应具有一定安全储备.  相似文献   

15.
李波  桂云海 《北方交通》2020,(10):45-48,54
以云南澜沧江二级公路某均质路堑边坡为例,基于有限元法以EI-Centro地震波为输入动荷载,利用ANSYS软件建立数值分析模型,分析了地震作用下,该路堑边坡的动力响应规律。结果表明,边坡动力响应起主导作用的是水平方向的地震力;均质路堑边坡坡脚动力响应最为明显,坡脚点最先开始产生塑性应变,逐渐开始出现土体破坏,应力集中于坡脚;边坡对任意方向输入的地震波均呈现随高度放大趋势,各参数的极大值均出现在坡顶边缘点;均质路堑边坡对输入的地震波存在临空面的放大效应,因此在地震荷载作用下边坡坡面岩土体最易脱落。  相似文献   

16.
为研究移动荷载对梁式桥地震响应的影响,在研习大量文献的基础上,以某高速公路上一座四跨预应力混凝土连续箱梁桥为例,建立了合适的桥梁和汽车分析模型,详细分析了车辆荷载大小、车辆速度、车辆数量等因素对地震荷载作用下桥梁动力响应的影响。研究结果表明:车辆荷载、汽车数量和汽车速度对桥梁地震响应均有不同程度的影响,桥梁振动响应随着车辆荷载和汽车数量的增加呈现出先增加后减小的变化趋势;桥梁振动响应随着速度的增加不断减小。  相似文献   

17.
针对特殊地区地震作用下大跨度桥梁行车安全性问题,以某铁路某双层结合钢桁混合刚构桥为工程背景,建立了考虑材料非线性、切向摩擦与轮轨赫兹准确接触关系的列车-轨道-桥梁耦合振动分析模型,并基于ABAQUS-Python软件二次开发,实现了钢轨随机不平顺的施加;选取EL Centro地震波为输入波,分析了强震作用下双层结合钢桁混合刚构桥的损伤演化规律,计算了不同地震强度、不同车速下列车脱轨系数、轮重减载率、车体振动加速度等动力响应指标,分析了关键参数对地震作用下桥上行车安全性的影响规律,提出了该混合刚构桥基于行车安全性能的车速限值。研究结果表明:在罕遇地震作用(0.38g)下,桥梁各构件均出现不同程度的塑性损伤,桥墩破坏区域较大,震后桥梁仍具有一定的承载力;震时列车脱轨系数随地震强度增大而显著增大;车体最大振动加速度与地震强度近似呈线性增长;列车轮重减载率是控制行车安全的关键指标,其峰值与车速呈正相关;当车速为200 km·h-1,地震强度大于0.10g时,列车轮重减载率存在超限情况,列车在下桥时会出现长时间轮轨分离现象;从行车安全性的角度,在设计地震作用0.20g时,安全车速为160 km·h-1。   相似文献   

18.
高速铁路双线简支梁桥空间振动响应分析   总被引:2,自引:0,他引:2  
研究高速铁路双线简支梁桥的空间振动响应,建立了考虑双线简支梁在车辆蛇行和单线行车时的偏心荷载作用下车桥系统空间耦联作用的振动力学分析模型,以20m和48m简支梁桥为例,在计算机上模拟列车过桥的全过程,通过分析动力响应,得出了一些有工程意义的结论。  相似文献   

19.
为探究铁路大跨T形刚构桥车桥耦合振动特性与动力性能,以宜万铁路马水河大桥为工程背景,建立桥梁空间杆系有限元模型以及包含31个自由度的车辆模型,进行车桥耦合振动计算分析.通过动载试验测试桥梁的自振特性,并测试列车以不同速度通过桥跨和以一定速度在特定位置制动时桥跨结构的动应变、动位移以及加速度等动力响应.依据动载试验与车桥耦合振动计算综合分析马水河大桥的动力性能.研究结果表明:车桥耦合振动计算结果与实测结果吻合较好,桥梁结构动力响应满足规范限值,该桥具有良好的横向、竖向刚度与动力性能;实测桥跨结构及墩顶动力系数最大值为1.08,桥梁结构受行车及制动的动力作用不明显;列车的动力响应随车速的提高而增大,但均满足规范限值,具有良好的安全性与平稳性.   相似文献   

20.
车桥振动问题是车辆和桥梁两个动力系统耦合振动问题,为掌握桥梁结构动力响应特性,必须研究不同车辆模型对桥梁结构动力响应的影响。基于车桥耦合振动原理,采用Matlab语言编制车桥耦合振动专用程序。采用该程序对一座简支梁桥的动力响应进行分析,对不同车辆模型作用下的计算结果进行比较,结果表明不同车辆模型对桥梁的动力响应存在差异,且对不同动力响应的影响程度也不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号