首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高水压隧道修建过程中渗流场变化规律试验研究   总被引:3,自引:0,他引:3  
以圆梁山隧道毛坝向斜高水压地段为工程背景,自行研制高水压隧道渗流场试验装置系统,通过室内模型试验,分析隧道修建过程中渗流场的变化规律及作用在二衬背后的水压力作用系数。结果表明:围岩边界不透水时,初始渗流场为静水场,围岩边界透水时,初始渗流场为非静水场;隧道开挖后,水压力等值线是以隧道为中心的圆环形状,无注浆圈时在围岩内的分布较均匀,有5m注浆圈时,等值线在注浆圈内密度较大,在注浆圈外较稀疏;注浆的施作,明显减小了隧道内的排水量,增加了注浆圈外表面的水压力作用系数,注浆圈承担了较大的地下水压力;衬砌施作后,有注浆圈时,衬砌背后的水压力有明显的折减现象,在排水孔断面上的分布呈"葫芦"状,衬砌背后水压力作用系数最小,围岩内和注浆圈外表面的水压力作用系数几乎相同,衬砌背后的水压力在排水系统与水沟连通的位置处最小,在仰拱处较大,在其他位置分布较均匀;隧道排水比越大,衬砌背后的水压力作用系数越小。  相似文献   

2.
分析地质复杂的富水山岭隧道的渗流问题,并基于渗流场流固耦合理论,研究采取注浆加固措施,注浆圈对渗流场的影响。通过理论分析、公式推导、数值分析的方法,并结合工程实践,在分析富水区隧道渗流场的基础上,得到以下几个结论:(1)建立富水区深埋隧道渗流简化模型,推导了渗流场下,隧道涌水量、注浆圈外水压力和衬砌外水压力的推导公式;(2)详细分析了注浆圈对涌水量、衬砌外水压力的影响,涌水量和衬砌外水压力之间的影响,FLAC3d数值分析建立模型,通过数值计算,验证了公式推导的正确,这可对类似工程提供有效的指导和借鉴。  相似文献   

3.
基于渗流力学基本理论,进行各向异性深埋隧洞渗流场解析研究。由稳定渗流场基本微分方程结合深埋隧道渗流场边界条件,利用坐标变换法将地层从各向异性转换为等效各向同性,运用保角变换将渗流方程转化为Laplace方程;将围岩渗流区域进行分区计算,得到围岩的渗流量计算公式;考虑衬砌为各向同性渗流,根据围岩与衬砌分界面上的渗流量相等得到衬砌外水压力的解析表达式,在此基础上考虑注浆圈及其对衬砌外水压分布的作用,得到了带注浆圈隧道衬砌水头和渗流量的解析解;通过与各向同性解析解和数值算例的计算结果对比,验证了公式的正确性。分析围岩水平与竖向渗透系数、注浆圈参数、衬砌参数、作用水头高度和隧道半径等因素对衬砌外水压力的影响,并考虑了各向异性渗流情况下衬砌外水压力与隧道渗流量的关系曲线。  相似文献   

4.
隧道开挖防水及渗水量控制是隧道施工和运营过程中的关键问题。为了更好地解决隧道渗水问题,依托青岛地铁昌乐路地铁站隧道开挖工程,结合渗流场基本理论,基于Abaqus有限元软件建立隧道开挖计算模型。按照施工顺序依次对初始渗流场、毛洞渗流场、注浆后渗流场及施做衬砌后渗流场4种工况进行模拟,分析渗流场的演变特征并计算其渗流量。同时对注浆圈厚度和注浆圈等效渗透系数2个参数对模拟计算结果的影响进行分析。研究结果表明:隧道开挖会使隧道周围孔隙水压力减小,两侧拱脚处渗流量最大,隧道帷幕注浆和施做防水衬砌对渗流场具有重要影响,可以有效减少渗流量。注浆圈厚度和等效渗透系数是影响渗流场与渗流量的2个重要参数,合理设置参数取值对隧道施工防水具有重要意义。  相似文献   

5.
将存在裂隙的岩体视为等效连续介质,建立海底隧道稳定渗流分析计算模型,并对渗流场相关特性进行探讨;结合青岛胶州湾海底隧道工程计算注浆圈对渗流场影响.结果表明:海底隧道防排水应采取“以堵为主,限量排放”的原则;注浆圈堵水效果与其厚度相关,且注浆圈厚度与其渗透系数成正比.但当围岩渗透系数与注浆加固圈渗透系数之比大于100,且注浆圈厚度不小于10 m时,注浆圈渗透系数、注浆圈厚度对隧道涌水量均影响不大;隧道涌水量和控制排水量之差越大,衬砌外水压力越大;为减少涌水量,可以采用注浆圈封堵地下水渗流通道,衬砌外水压力将显著降低.当处于自由排水阶段时,衬砌不承担水压力,隧道涌水量与控制排水量相等.  相似文献   

6.
水底隧道复合式衬砌水压力影响因素分析   总被引:6,自引:5,他引:1  
富水量较大的水底隧道,隧道防排水系统对于控制隧道涌水量和衬砌外水压力十分重要。采用数值计算方法,研究固定水头下水底隧道不同注浆参数、衬砌渗透系数及隧道控制排水量对衬砌水荷载的影响,并与轴对称解析解结果进行对比验证。研究结论:(1)渗透系数增加和注浆圈厚度减小都致使衬砌外水压力的增加;(2)初衬渗透性的变化对初衬外水压力的影响十分显著;(3)数值解与解析解的结果相差不大,非圆形隧道截面可利用等效半径求解衬砌外水压力和隧道涌水量的解析解,并用于隧道防排水的初步设计;(4)隧道注浆圈参数和初衬渗透系数一定时,增大控制排水量有利于减小二衬背后外水压力。  相似文献   

7.
别岩槽隧道注浆加固圈及二次衬砌厚度的确定   总被引:1,自引:0,他引:1  
文章通过理论分析和数值计算,对隧道注浆加固圈和二次衬砌厚度与作用在隧道衬砌上的水压力的关系进行了分析,并根据数值计算结果和工程实际确定出穿越F1断层处别岩槽隧道的注浆加固圈和二次衬砌的合理厚度.  相似文献   

8.
围岩的注浆效果直接影响到海底隧道的施工安全。采用数值计算方法对固定水头的海底隧道在不同注浆圈厚度、注浆圈渗透系数以及排水方式下,隧道的涌水量和衬砌外水压力进行计算与分析。并将数值模拟的结果与轴对称解析解结果进行对比,结果表明:(1)不同的隧道防排水方式对衬砌外压有着明显的影响;(2)注浆圈的径向加固范围对隧道涌水量和衬砌外水压力产生一定的影响,但其效果并不明显;(3)注浆圈的渗透系数对隧道的涌水量和衬砌的外水压力有较大影响。  相似文献   

9.
考虑水荷载作用的铁路隧道衬砌结构设计   总被引:3,自引:1,他引:2  
采用室内模型试验方法,通过改变围岩注浆圈模拟介质的渗透系数,进行10组铁路隧道衬砌结构的水荷载折减系数测试试验,研究水荷载折减系数与注浆圈综合渗透系数的关系。试验结果表明,当围岩注浆圈渗透系数小于10-5cm.s-1时,水荷载折减系数取0~0.3为宜;反之,取值为0.3~1。按考虑水荷载和不考虑水荷载两种受力模式对隧道衬砌结构进行计算分析结果表明,存在较大水荷载作用的隧道衬砌结构设计不宜套用标准图,建议采用钢筋混凝土圆形衬砌结构。  相似文献   

10.
基于流固耦合理论下穿库区隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
以某下穿库区铁路隧道为依托工程,对比分析有无渗流场作用和不同水深条件下,隧道结构应力变化规律以及围岩变形、塑性区和渗流场的变化特性,同时还考虑隧道加固圈厚度和渗透系数对围岩稳定性的影响。研究结果表明:地下水渗流场对围岩变形影响较大,不仅能引起大范围的库底沉降,而且能增大隧道拱顶和拱腰的位移,并且能够减小仰拱的隆起量以及加剧围岩塑性区的范围;隧道的开挖能够对地下水孔隙水压力的分布形成明显的扰动,并且在两拱脚处渗流速度最大,最大塑性区位于横向临时支撑处;注浆加固圈能够改善围岩的受力,隧道最优注浆圈厚度在5m,并且当渗透系数小于围岩渗透系数的1/50时注浆圈加固效果不再明显。  相似文献   

11.
针对泽雅隧道穿越F10断层破碎带区围岩破碎、涌水量大等问题,为保证隧道的正常施工,确保后期运营安全,采用ABAQUS数值分析软件建立是否考虑流固耦合的模型,分析不同工况下衬砌的力学特性,计算显示渗流的存在导致隧道衬砌最大总应力增加52.15%,衬砌最大弯矩增加75.4%。鉴于涌水对隧道力学特性影响较大,进而结合隧道实际情况进行涌水处治措施比选,选取泄水孔结合径向注浆的处治措施,并运用数值分析手段对注浆圈厚度和注浆材料渗透系数进行优化,计算结果显示注浆层厚度为5~7 m时,注浆材料渗透系数为围岩的30~50倍时施工效果较好。该分析结果有效指导了施工,可为类似工程提供参考。  相似文献   

12.
高水压隧道衬砌渗流-应力-损伤耦合模型研究   总被引:1,自引:0,他引:1  
研究目的:富水区隧道衬砌由于长期处在高水压的环境中,衬砌的损伤受到渗流场的影响较为明显,由于渗流场作用而产生相应的应力场和损伤场的变化,衬砌损伤和应力的变化又对渗流场产生反作用,对衬砌结构的混凝土的渗流场、应力场及损伤场进行分析和研究;通过流固耦合来表达隧道衬砌损伤及演化过程,以提高对高水压隧道衬砌损伤表达的准确性和鲁棒性。研究结论:(1)可将混凝土损伤的宏观表达和细观变化统一起来,采用混凝土代表体积单元体作为承水压隧道衬砌流固耦合的研究对象;(2)建立高水压隧道衬砌渗流场、应力场和损伤场的流固耦合模型,采用迭代法可提高模型的可行性;(3)工程计算实例中通过比较是否考虑耦合的情况进行计算模拟衬砌损伤表达,得出流固耦合模型能够更客观的反映实际情况;(4)流固耦合模型能够应用于隧道健康监测及维护。  相似文献   

13.
高水压隧道渗流场分布的复变函数解析解   总被引:1,自引:0,他引:1  
研究目的:在进行高水压山岭隧道支护结构设计时,合理地确定衬砌上作用的水压力是结构设计的关键。本文以深圳市东部过境高速公路的莲塘隧道为工程背景,对高水压隧道渗流场分布进行理论研究。莲塘隧道位于莲塘水厂西南部地段的丘陵地区,并处于深圳断裂带的主要影响带内,断层及节理裂隙发育,岩体破碎。由于临近深圳水库,且地处深圳水库常年水位以下,若采用下穿方案,隧道将长期处于高水头作用之下。因此,对隧道及围岩中的渗流场进行研究对隧道衬砌结构设计与防排水设计有直接的指导意义。研究结论:本文分别采用有限差分岩土软件FLAC3D和经典解析解Harr解对高水压隧道渗流场进行了验证计算。通过计算对比,分别得到了本文解析解和有限差分数值解和Harr解的渗流场分布等值线图,通过比较,最终证明了本文解析解在高水压深埋隧道渗流场计算中的正确性。  相似文献   

14.
研究目的:研究任意形状的深埋隧道复合式衬砌的内力和位移具有重要理论意义和工程应用价值。本文首先通过弹性力学理论,导出轴对称荷载作用下,圆形隧道复合式衬砌的轴力和位移的解析解,并与数值解进行比较,确定初支、二衬间相互作用的杆单元弹性模量的合理取值;之后分析了Ⅳ级围岩中非圆形隧道复合式衬砌的轴力、弯矩和位移,围岩对初支、初支与二衬间的约束作用均采用杆单元模拟,其弹性模量分别取地层和初支的弹性模量;最后讨论了侧压系数对非圆形隧道复合式衬砌力学性能的影响。研究结论:(1)轴对称荷载作用下,圆形隧道初支和二衬的轴力和位移的解析解与数值解的误差不到5%,确定了使用杆单元模拟非圆形隧道初支和二衬间相互作用时,其弹性模量可以采用初支或二衬的弹性模量;(2)非圆形隧道二衬的轴力和弯矩均比相应位置处初支的大,初支和二衬分别在拱腰和拱底取得轴力最大值,均在拱脚取得弯矩最大值,均在拱底取得竖向位移最大值;(3)对于侧压系数在0.1到0.3范围内的Ⅳ级围岩,侧压系数的改变对非圆形隧道二衬最大的轴力、弯矩和位移的影响都比较小;(4)本研究结果可应用于隧道、竖井、管桩等工程结构。  相似文献   

15.
以镜像法和渗流力学理论为基础,推导了半无限平面双孔近距平行隧道稳定渗流场的解析解,并与数值解进行了对比验证。对2个平行隧道间距,注浆圈和初期支护的渗透系数、厚度等参数对隧道涌水量和初期支护后水压力的影响进行了分析。研究结果表明:随着2个隧道水平间距的增大,隧道的涌水量和衬砌后水压力逐渐增大;当隧道中心水平间距大于隧道半径的20倍时,水平间距的影响几乎可以忽略不计;随着其中一个隧道埋深的逐渐增大,该隧道涌水量和初期支护后水压力逐渐减小,而邻近隧道涌水量和初期支护后水压力先减小后增大;随着隧道注浆圈渗透系数的减小和注浆圈厚度的增大,隧道涌水量和初期支护后水压力均逐渐减小;随着隧道初期支护渗透系数的减小和初期支护厚度的增大,隧道涌水量逐渐减小,初期支护后水压力却逐渐增大。  相似文献   

16.
隧道衬砌外水压力计算方法研究现状与进展   总被引:6,自引:3,他引:3  
隧道工程中地下水作用在衬砌上的外水压力是进行衬砌设计的一个重要因素 ,如何确定外水压力是隧道工程界迫切需要解决的一个问题。以往的相关研究可大致分为折减系数法、理论解析法、理论解析与数值解析相结合法、数值解析方法 (渗流、渗流与应力耦合方法 )等几种。对于隧道工程 ,这些研究还不能完全满足实际工程的需要 ,有待于进一步研究  相似文献   

17.
隧道衬砌外水压力计算方法研究现状与进展   总被引:9,自引:1,他引:8  
隧道工程中地下水作用在衬砌上的外水压力是进行衬砌设计的一个重要因素,如何确定外水压力是隧道工程界迫切需要解决的一个问题。以往的相关研究可大致分为折减系数法、理论解析法、理论解析与数值解析相结合法、数值解析方法(渗流、渗流与应力耦合方法)等几种。对于隧道工程这些研究还不能完全满足实际工程的需要,有待于进一步研究。  相似文献   

18.
玉磨铁路太达村隧道某施工段以粉细砂岩为主,在开挖扰动或遇水时出现涌砂现象,工程性质迅速恶化,对施工进度造成影响。对于富水粉细砂岩隧道中的地下水渗流特性问题,基于地下隧洞围岩稳定性分析中的复变函数法,求得实际马蹄形隧道的形状变换函数和开挖过程中隧道渗流场的数值解。该方法相比于传统圆孔隧道的渗流解析解,具有更高的准确性。结合解析解的预测和实际工程地质条件,分析几种支护、降水方法的合理性。  相似文献   

19.
高水压富水山岭隧道设计   总被引:2,自引:1,他引:1  
通过对地下水渗流场理论解析公式的推导与分析,结合宜万线齐岳山隧道高水压富水地段现场具体处理情况,提出高水位富水隧道设计应遵循的基本原则"以堵为主,限量排放";地层注浆是实现限量排放的主要方式,确定注浆加固范围时应注意注浆帷幕体自身的稳定性;排水系统是衬砌结构设计中不可缺少的一部分,在完善可靠的排水系统下,衬砌结构承受的外水荷载可以较大幅度地进行折减。  相似文献   

20.
深埋山岭隧道帷幕注浆段衬砌外水压力研究   总被引:2,自引:2,他引:0  
通过建立深埋山岭隧道的渗流模型,分析外水压力对支护体系的荷载影响,推导出帷幕注浆段衬砌外水压力的计算公式以及隧道内最大涌水量公式,并就理论公式结合工程实际情况展开探讨。同时,对太行山隧道帷幕注浆段外水压力进行现场测试。测试数据表明,由于监测时间较短、测点选择等原因,虽然帷幕注浆段衬砌外水压力较小,但考虑到后期外水压力的增加,为确保隧道运营期安全,需加强高压富水段外水压力持续监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号