首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
湿滑道面飞机轮胎临界滑水速度数值仿真   总被引:1,自引:0,他引:1  
采用ABAQUS建立了基于CEL算法的飞机轮胎与积水道面流固耦合分析模型,推导了轮胎接触面动水压强与道面竖向支撑力表达式,对比了飞机起飞与着陆过程中的滑行状态,提出了临界滑水速度的上下限解概念,校核了轮胎模型静态变形与动态滑水特征,研究了胎压、胎纹与水膜厚度的影响规律,分析了轮胎接地面积与动水压强分布。仿真结果表明:在76.6kN轴载作用下,轮胎模型接地面积为0.076m2,轮胎中心竖向变形约为3.27cm,轮胎临界滑水速度为128.5~222.4km·h~(-1),与NASA轮胎滑水试验数据一致,验证了仿真模型的合理性和适用性;在胎压为1 140kPa时,减速冲击条件下飞机轮胎临界滑水速度为163km·h~(-1),小于加速冲击时的上限226km·h~(-1),轮胎接地面积明显减小,道面支撑力低于机轮轴载的10%;在450~1 109kPa胎压范围内,减速冲击时临界滑水速度下限较NASA经验公式计算结果更为保守,两者相差30~70km·h~(-1);轮胎纵向沟槽排水可降低轮胎前缘动水压强峰值,增大轮胎接地面积,减速冲击时带纹轮胎临界滑水速度较光滑轮胎提高了26.9%~28.8%,增幅约为加速冲击时的2倍;当道面水膜厚度由3mm增加至13mm时,胎压为1 140kPa的飞机轮胎临界滑水速度上下限分别降低了85km·h~(-1)和43km·h~(-1);在低胎压、厚水膜与减速冲击条件下,临界滑水速度下限仅为127km·h~(-1),低于常见飞机进近接地速度205~250km·h~(-1),因此,滑水事故风险增加。  相似文献   

2.
为研究换道决策阶段驾驶人对后方车辆的速度感知特征,以小型乘用车为平台,利用毫米波雷达、车载总线数据仪、音视频监测系统等搭建了试验车。招募了15名驾驶人,在某高速公路完成后方车辆速度估计试验,试验车速度分别设置为60、70、80、90km·h~(-1),最后获取了1 625组数据。采用显著性分析方法,分析了相对速度、后方车辆速度与相对距离对驾驶人速度估计行为的影响特性。利用多元线性回归理论建立了驾驶人速度估计模型,并对模型进行了检验。分析结果表明:约60%的速度估计误差绝对值不大于10km·h~(-1),且驾驶人的速度估计误差满足正态分布;驾驶人速度估计误差随两车相对速度和后方车辆速度的增大而减小,相对速度和后方车辆速度较低时,易高估后方车辆速度,相对速度和后方车辆速度较高时,易低估后方车辆速度;随两车相对距离的增大,驾驶人速度估计误差变化趋势不显著,但两车相对距离较小时,驾驶人易高估后方车辆速度;速度估计模型的平均误差为-0.56km·h~(-1),因此,估计结果可靠。  相似文献   

3.
提出一种采用国际平整度指数(IRI)评价机场道面平整度的适用性综合分析方法,建立了1/4车辆模型与飞机的动力学模型,采用IRI和飞机重心处竖向加速度(VACGA)作为机场道面平整度的评价指标,利用MATLAB/Simulink建立了IRI和VACGA求解模型;以正弦函数形式的不平整激励模拟机场道面纵断面的微波起伏,在不同振幅、波长和滑行速度条件下定量解析IRI和VACGA的分布特性。计算结果表明:VACGA和IRI均与振幅成正比;IRI的敏感波段为波长1~5m的短波,并在波长为2m时达到最大;飞机在200km·h~(-1)滑行速度下,VACGA随波长的变化呈现3个波峰,并且在波长为15m时达到最大波峰;当飞机在滑行道的滑行速度小于40km·h~(-1)时,VACGA的敏感波段为2.3~7.2m,基本分布在IRI的敏感波段内,说明滑行道平整度的评估可采用IRI,但当飞机在跑道的滑行速度大于60km·h~(-1)时,VACGA敏感波段为6.4~23.6m,分布在IRI不敏感波段内,说明当飞机在跑道的滑行速度较高时,采用IRI检测机场道面平整度是不合理的。  相似文献   

4.
比较了现行中美规范平行式加速车道长度计算方法的差异,结合运动学模型和可接受间隙理论,在考虑主线交通水平、初始速度与可变间隙3种影响因素的基础上,建立了城市快速路平行式加速车道长度计算模型,采用蒙特卡洛方法求解模型,分析了3种影响因素对加速车道长度的影响,并提出了一种基于期望初始速度和期望主线交通水平的加速车道长度确定方法。分析结果表明:3种影响因素对加速车道长度有较大的影响,在不同设计时速下,《城市快速路设计规程》(CJJ129—2009)规定的长度最小值均小于仿真值,在设计时速为100km·h~(-1)时,三级服务水平上下限的加速车道长度分别比规定的最小值大27~36、9~27 m,在设计时速为80km·h-1时,分别大10~22、4~24m,在设计时速为60km·h~(-1)时,分别大15~24、13~30m;随着初始速度的减小,加速车道长度呈现增大趋势;在相同条件下,第4种临界间隙函数的加速车道长度最大,而第1种临界间隙函数的加速车道长度最小,表明临界间隙越大,需要的加速车道就越长;不同设计时速下三级服务水平上下限加速车道长度和初始速度的二次函数拟合度为0.865 8~0.999 7,因此,整体拟合效果良好。可见,本文的快速路平行式加速车道长度计算方法合理、可靠。  相似文献   

5.
基于空气动力学理论分别推导了作用在接触线上的空气阻尼和脉动风气动载荷, 并将空气动力项添加至接触线波动速度公式中进行修正; 通过风洞试验和CFD绕流仿真得到了横风环境下的气动阻力系数, 分析了不同空气阻尼下接触线波动速度的变化规律; 基于AR模型和接触网的结构特性, 建立了具有时间和空间相关性的接触网脉动风场, 通过仿真计算分析了脉动风速和风攻角对接触线波动速度的影响。研究结果表明: 静风载荷引起的接触线空气阻尼很小, 当平均风速达到30 m·s-1时, 接触线空气阻尼仅为0.3, 接触线波动速度为549.1 km·h-1左右, 因此, 空气阻尼不会对接触线波动速度产生较大影响; 当来流风攻角为60°, 平均风速不大于10 m·s-1时, 脉动风下接触线波动速度标准差和最值差分别小于1和6 km·h-1, 此时接触线波动速度相对无风情况变化较小, 脉动风载荷对接触线波动速度的影响不明显; 当风速达到40 m·s-1时, 接触线平均波动速度较无风情况下降39.39 km·h-1, 且其标准差和最值差分别达到11.84和75.98 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至474.16 km·h-1, 因此, 脉动风下风速越大, 接触线波动速度受脉动风载荷影响越显著; 当风速保持30 m·s-1, 来流风攻角为0°~30°时, 接触线波动速度标准差和最值差分别小于1和5 km·h-1, 此时脉动风载荷对接触线波动速度的影响较小; 当风攻角为90°时, 接触线波动速度标准差和最值差分别达到12.38和73.19 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至472.91 km·h-1, 因此, 脉动风下来流风越偏于水平方向, 对接触线波动速度的影响越小。   相似文献   

6.
针对机车齿轮传动系统的参数振动问题,建立了考虑齿面摩擦时机车齿轮传动系统的动力学模型,基于势能原理获得了齿轮时变啮合刚度,并利用傅里叶级数展开,利用多尺度法进行求解,获得了系统参数振动稳定的边界条件。最后开展实例分析,研究了齿面摩擦因数对机车齿轮传动系统参数振动稳定性的影响。分析结果表明:不计齿面摩擦时,当机车速度约为119.02/j km·h~(-1)(j是谐波项)时,系统会产生参数共振,摩擦因数越大,对应的参数共振速度越大;在参数共振速度附近存在系统振动不稳定区域,当系统阻尼系数和摩擦因数均为0,谐波项分别为1、2、3、4时,相对于参数共振速度的波动值分别为9.16、1.46、0.53、0.55km·h~(-1),系统振动不稳定;当阻尼系数为0时,在对应谐波项下,与摩擦因数为0时相比,齿面摩擦因数分别为0.1、0.2时,系统振动不稳定区域内相对于参数共振速度的波动值分别增加了约4.88%、9.54%;当阻尼系数为0.01时,随着摩擦因数的增大,在系统振动不稳定区域内相对于参数共振速度的波动值不一定增加;摩擦因数越大,系统稳定所需的阻尼系数越小。  相似文献   

7.
市域快速轨道交通系统制式比选是项目前期研究的基础内容,直接决定项目的设计标准和投资。在综合整理中国市域快速轨道交通设计案例的基础上,明确系统制式的选择标准:速度目标值、车辆选型、供电系统、工程经济性。分析比较不同制式在各个标准下的性能特性及优劣,从工程造价角度分别说明不同制式在土建工程费用、车辆购置费、车辆基地投资、运营成本等方面的区别。研究表明,120 km·h~(-1)速度目标值的直流1 500 V市域B型车,投资规模适中,车辆技术成熟,运营维护成本较低,性价比较高。  相似文献   

8.
为探究高速列车齿轮箱箱体振动特性和疲劳损伤, 应用小滚轮高频激励台架试验, 将滚轮表面加工成径跳量幅值为0.05 mm的13阶多边形, 可等效成20阶车轮多边形, 研究了某型齿轮箱箱体在不同垂向载荷与速度工况下的振动特性; 通过雨流计数法及Miner线性损伤法则, 分析了齿轮箱箱体单位时间应力累计损伤。研究结果表明: 受齿轮箱箱体共振影响, 不同垂向载荷与速度工况下, 高速列车运行速度为200 km·h-1时, 齿轮箱箱体各测点的垂、横向加速度均方根值均为最小; 当垂向载荷为23 t时, 大部分测点的垂、横向加速度均方根值均为最大; 齿轮箱箱体存在573 Hz的局部固有频率被激发共振, 其原因是试验速度为100 km·h-1时试验台发生共振, 以及试验速度为300 km·h-1时, 受到20阶多边形车轮转频约580 Hz的主频激扰; 车轮初始速度从0加速到200 km·h-1及从300 km·h-1减速至0的速度等级之间时, 齿轮箱箱体各测点的单位时间应力累计损伤波动较大, 其余速度等级段各测点的单位时间应力累计损伤波动很小; 单位时间应力损伤最大值出现在大齿轮箱齿面观察孔, 为3.72×10-10, 损伤最小值位于小齿轮箱轴承正上方, 仅为8.29×10-18。可见, 箱体共振、试验台减速运行、速度等级对齿轮箱箱体振动加速度影响较大; 非共振、试验台不减速运行、相同速度等级下, 垂向载荷对单位时间应力累计损伤影响甚微。   相似文献   

9.
近年来,随着西部大开发力度加大,特别是对公路基础设施的投入历史空前。交通的发展对国民经济的稳定快速发展具有相当重要的意义。笔者就省道S305线K231K260(25 km)油路大修为例,谈一谈沥青路面施工中质量控制要点  相似文献   

10.
为研究重载车辆在爬坡过程中运行速度的变化规律,采用TruckSim动力学仿真软件建立了爬坡路段重载车辆运行速度仿真系统,分析了纵坡坡度、初始速度、载重量和比功率等因素对车辆爬坡速度的影响。研究表明:爬坡过程中,车辆受坡度阻力作用,速度持续下降,变换挡位后车速有所回升;坡度越大,速度下降越快,达到的最低速度和稳定速度越低,换挡越频繁;初始速度与最低速度和稳定速度无关;载重量越大,车速下降越快;比功率越大,车辆爬坡性能越好;根据多因素综合分析,车辆在以初始速度小于70 km·h~(-1),坡度小于5%,载重量小于35 t状态上坡,对其他车辆干扰较小,安全性较高,可为道路纵断面设计及道路货运企业车辆管理提供参考。  相似文献   

11.
慢行交通系统规划简述   总被引:17,自引:0,他引:17  
1慢行交通 1)概念 慢行交通,是相对于快速和高速交通而言的,有时亦可称为非机动化交通(non—motorized transportation),一般情况,慢行交通是出行速度不大于15km·h^-1的交通方式。慢行交通包括步行及非机动车交通,由于许多大城市的非机动车交通主要是自行车交通,慢行交通的主体就成为步行及自行车交通。虽然慢行交通出行速度较低,但在出行方式选择中仍然占有相当大的比重。在我国大部分城市的交通结构中,  相似文献   

12.
选取典型城市隧道进行机动车排放因子测试,在南京市富贵山隧道进行监测,对隧道内的PM2.5浓度、风速风向、交通量、车型、速度及气象条件进行采集分析、计数、分类、观察。建立守恒方程和多元线性回归求解PM2.5平均排放因子,分别得出出租车(天然气)、小汽车、公交车(天然气)、大客车(柴油)、大货车在3540 km·h-1,4045 km·h-1,4550 km·h-1范围内的平均排放因子;其中最大值为0.157 2 g·(km·辆)-1,最小值为0.015 21 g·(km·辆)-1,在相同速度范围内城市大货车的PM2.5的平均排放因子明显高于其它,其次是大客车(柴油)、公交车(天然气)、小汽车、出租车(天然气)。  相似文献   

13.
利用具有高灵敏度的胶束荧光法,对胺碘酮的血药浓度进行了监测;使用SLS为胶束试剂,以国产930型荧光光度计为主要分析仪器,得到系列药代动力学参数:t_(1/2)(α)为1.18h,t_(1/2)(β)为40.75h,K_(21)为0.278h~(-1),K_(10)为0.036h~(-1),K_(12)为0.291h~(-1)。该法的线性范围为2×10~(-9)~8×10~(-6)mol/L,检测限为1.3×10~(-9)mol/L,平均回收率为99.93%。  相似文献   

14.
高速公路半幅封闭施工区限速标志效能试验   总被引:1,自引:0,他引:1  
采用现场试验与统计分析,研究了高速公路半幅封闭施工作业区交通标志尤其是限速标志的警示效能,提出了分阶限速方案和交通标志效能试验方案,选择典型路段开展了既有交通标志效能试验、限速标志位置试验、分阶限速效能试验和优化后交通标志效能试验。试验结果表明:既有交通标志尤其是限速标志效能不足,试验路段客货车经过限速标志后车速远高于限速值,且速度降低幅度很小。通过分阶限速优化交通标志设置,施工作业区车辆速度明显降低,客车速度降低38km·h-1,货车速度降低32km·h-1;施工作业区客车运行速度与限速值的差值从60km·h-1降低到15km·h-1,货车速差从40km·h-1降低到5km·h-1,基本达到限速值,整个交通流运行速度与限速值差值变化趋势一致。可见,分阶限速优化后的交通标志效能提高明显。  相似文献   

15.
运用实测数据和仿真实验的方法,分析高速公路改扩建施工区流量、速度、车头时距等参数特性。基于实测速度-流量数据,建立速度-流量回归模型。研究发现,发生交通中断前后施工区通行能力会发生显著变化:2-1施工区(单向2车道,关闭-车道)交通中断前后通过流率下降百分比为8.56%,3-1施工区(单向3车道关闭2车道,开放1车道通行)交通中断前后通过流率下降百分比为10.56%,3-2施工区(单向3车道关闭1车道,开放2车道通行)交通中断前后通过流率下降百分比为9.75%;量化大型车比例、车道关闭形式、限速、中间带开口长度对通行能力的影响,确定大型车比例对通行能力的修正系数,给出不同车道关闭形式及不同限速、不同中间带开口长度下的通行能力推荐值。研究结果可为施工区的交通组织提供理论支撑。  相似文献   

16.
分析了CNG公交客车的燃料消耗量测试参数,确定了流量计的安装位置;基于安装位置的固定气压范围,考虑到驾驶节能技术水平与乘坐人数的影响,提出了CNG质量流量的计算方法;通过场地测试,验证了CNG质量流量与燃料温度、燃料压力之间的非线性关系,以及与环境温度、气瓶出口端压力的关系;通过运营测试,分析了CNG质量流量修正前后的差异,并验证了测试方案的可行性。研究结果表明:受测试气压的限制,流量计唯一的串接位置是减压阀的出口端与低压燃气滤清器之间,CNG经过减压阀后的出口压力基本稳定在0.80~0.95 MPa之间;在运营测试结果修正中,驾驶节能技术的影响最大,最大偏差可达4%,受测公交线路的驾驶节能技术水平有87.6%的相对值介于0.9~1.1,离散度较低;当环境温度升速为4.0~4.3℃·h~(-1)时,燃料温度的变化速度基本波动于±0.61℃·h~(-1)之间,证明了燃料温度对环境温度的变化不敏感;气瓶出口端压力与燃料压力没有必然联系,其数值的减小不会影响CNG质量流量的变化;在0.80~0.95 MPa的燃料压力下,测试位置的CNG当量密度基本稳定在6.1kg·m~(-3),连续测试30km后,CNG质量流量计算值与实测值误差小于5%;经对CNG质量流量修正后,3辆测试车CNG质量流量的变化幅度分别为1.88%、-4.04%和1.71%,因此,采用CNG质量流量计算CNG消耗量更为精确。  相似文献   

17.
浞河中桥位于G206线K265+919.3km处,原桥设计荷载为汽-20、挂-100的简支钢筋混凝土板桥,已经不能满足当前重交通荷载  相似文献   

18.
为明确山区隧道出入口区段的车辆运行特性和驾驶行为,揭示隧道洞口交通事故的发生机制,在高速公路和城市快速路各选择3座隧道,采集了小客车和货车在隧道出入口区段的断面速度,高速公路单个断面观测样本大于500 veh,快速路隧道单个断面样本大于1 100 veh,基于断面数据分析了车辆行驶速度的变化规律和影响因素,并建立了运行速度预测模型。分析结果表明:驾驶人临近隧道洞口时会减速,小客车速度降幅为12~21 km·h-1,货车速度降幅为2~10 km·h-1,货车速度降幅低于小客车;洞口位置小客车运行速度大于80 km·h-1,货车运行速度大于70 km·h-1;高速公路隧道出入口段的车速范围为75~110 km·h-1,快速路隧道出入口段的车速范围为60~88 km·h-1,高速公路隧道出入口段的车速普遍高于城市快速路隧道; 驾驶人进入隧道洞内适应环境之后会加速行驶,驶出隧道时有加速行为,但当隧道出口前方有小半径弯道和互通立交时,驾驶人会减速以适应前方的道路条件;隧道入口前100 m至洞口范围内的车辆减速度最大,货车减速度范围为0.23~0.58 m·s-2,小客车减速度范围为0.47~ 0.70 m·s-2;同一断面的速度观测值存在较强的离散性,表明车辆之间存在明显的纵向干涉,容易发生追尾事故。   相似文献   

19.
根据山区圆曲线路段的特点,分析了轮胎的受力和变形情况,建立了半挂汽车列车与山区圆曲线路段的耦合动力学模型。以牵引车和半挂车的轮胎侧偏角和折叠角为指标,运用提出的动力学仿真法分析了不同车速下圆曲线路段半径、超高、滑动附着系数对半挂汽车列车行驶安全性的影响,并与运行速度法和理论极限速度法的计算结果进行对比。仿真结果表明:当圆曲线半径为125m,路面超高为2%,滑动附着系数分别为0.20、0.35、0.50、0.80时,运用动力学仿真法求得的临界安全车速分别为20、35、55、72km·h-1,运用运行速度法求得的临界安全车速均为50km·h-1,运用理论极限速度法求得的临界安全车速分别为18、20、25、30km·h-1;当圆曲线半径为250m,滑动附着系数为0.35,超高分别为0、2%、4%、6%时,运用动力学仿真法求得的临界安全车速分别为35、38、25、20km·h-1,运用运行速度法求得的临界安全车速均为60km·h-1,运用理论极限速度法求得的临界安全车速分别为30、31、32、33km·h-1;当路面超高为6%,滑动附着系数为0.50,圆曲线半径分别为125、250、400、650m时,运用动力学仿真法求得的临界安全车速分别为58、62、70、72km·h-1,运用运行速度法求得的临界安全车速分别为50、60、68、71km·h-1,运用理论极限速度法求得的临界安全车速分别为28、37、48、60km·h-1。可见,提出的动力学仿真法考虑了车辆悬架动力学特性、天气与路面条件,可以准确描述半挂汽车列车的运行状态。  相似文献   

20.
目前,哈尔滨市已初步完成城市轨道交通路网规划工作.规划方案中已初步确定在2005年建成轨道交通一期工程(1号线及其支线).1号线是规划路网中一条东西干线,全长17.48km,位于城市主轴线上,从哈尔滨东站至哈尔滨南站;支线是地铁环线的一部分,是一条南北线,全长7.09km,由和兴路到汽轮机厂.一期工程总长度24.57km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号