首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
铁路工程大体积混凝土的温度裂缝是影响混凝土结构安全性和耐久性的重要因素。本文首先总结了铁路工程大体积混凝土水化热的影响因素,然后从水化热温升的控制、浇筑阶段施工温度的控制及养护阶段混凝土内外温差的控制3个方面分析了现有抑制铁路工程大体积混凝土温度裂缝的措施。最后指出了现有抑制铁路工程大体积混凝土温度裂缝过程中存在的问题。  相似文献   

2.
大体积混凝土水泥水化热施工冷却技术   总被引:5,自引:4,他引:1  
大体积混凝土由于内部水泥水化热引起的温度上升 ,一般混凝土浇筑后 3d时水化热达到峰值。当外界环境温度很低时 ,混凝土内外温差大于 2 5℃ ,混凝土即产生温度应力裂缝。为保证混凝土的施工质量、防止裂缝的产生 ,特对大桥承台大体积混凝土施工温度情况进行论证 ,并采取相应的人工冷却控制温度措施。  相似文献   

3.
甬台温客运专线简支箱梁设计采用耐久性混凝土,要求施工中一次浇筑成型.施工为克服夏季天气炎热和大体积混凝土施工的困难,采取严格混凝土施工中各环节的温度,降低混凝土的内外温差、加强养护,确保混凝土无明显施工裂缝,满足了客运专线桥梁混凝土的耐久性要求.  相似文献   

4.
赵伟 《铁道建筑》2005,(3):73-75
中关村金融中心基础底板厚 2 8m ,属大体积混凝土。施工中科学地确定水泥用量以降低水泥水化热 ,并采取覆盖防火草帘等措施减小混凝土的内外温差 ,防止了温度裂缝的产生。在混凝土养护期间还进行了混凝土温度监测。  相似文献   

5.
结合西安天创数码大厦工程筏板大体积混凝土施工,分析混凝土裂缝的成因,介绍了混凝土原材料的控制、混凝土配合比及外加剂的选择、混凝土浇筑过程及收面的控制、混凝土浇筑后温度的控制及混凝土养护等技术.通过采取这些技术,有效地防止了混凝土的温差裂缝和塑性收缩裂纹,保证了筏板混凝土工程质量.  相似文献   

6.
姜朔 《铁道建筑》2013,(1):17-19
应用ANSYS有限元软件,建立了广州动车段走行线特大桥桥墩施工水化热温度控制分析模型,结合监测结果,研究桥墩温度场和应力场的变化规律,并对不同浇筑温度、混凝土骨料岩性和材质模板等对水化热的影响进行分析.研究结果表明:随着浇筑温度的降低,桥墩水化热反应最高温度降低;在满足强度要求的前提下,选用石英岩作为混凝土骨料能使桥墩水化热温度最低;选用木模板可减小桥墩内外温差.  相似文献   

7.
张斌 《铁道建筑技术》2007,(Z1):264-266
分析了大体积混凝土开裂原因及影响因素,从材料、施工控制、浇筑工艺、养护等几方面介绍了大体积混凝土施工时防止温度裂缝产生的技术措施。  相似文献   

8.
结合深圳新区大道主体结构大体积混凝土浇注的工程实践,就大体积混凝土的体积大、水化热造成温差大、易产生温度应力并形成裂缝等问题进行探讨,并从混凝土原材料选择、配合比设计和施工措施等方面,提出了大体积混凝土施工中避免混凝土裂缝、提高混凝土质量应采取的措施。  相似文献   

9.
在湖底隧道施工中会遇到大体积混凝土浇筑问题,若混凝土温差较大,将导致裂缝的发生,影响结构的安全。通过对某湖底隧道混凝土浇筑过程中水化热温度变化情况进行的观测,得出混凝土在水化热阶段的温度变化规律,为混凝土温度变形裂缝控制和施工组织提供了依据。  相似文献   

10.
制定科学的施工现场温控方案是防止大体积混凝土在冬季施工时产生外层冻害和温度裂缝的关键。为了制定针对性的温控方案,本文以寒区桥梁承台大体积混凝土施工为背景,模拟冬季施工外部环境进行混凝土结构温度场、应力场分析,并结合分析结果提出温控标准和施工建议,进而根据现场温度场监测结果及时有效调整温控措施。结果表明,采取蓄热能法适当提高混凝土浇筑温度、浇筑前对基础和冷壁进行预热、浇筑过程中加强中心区域混凝土通水降温、浇筑完毕后对表层混凝土进行严格的保温养护等措施,可以有效控制承台混凝土温度裂缝的产生,兼顾防冻与抗裂两方面的要求。  相似文献   

11.
柳州三门江大桥大体积混凝土温度控制技术   总被引:1,自引:0,他引:1  
研究目的:通过模拟柳州三门江大桥主墩承台、墩身、索塔及主桥箱梁0#块大体积混凝土现场施工情况,以及考虑混凝土物理热学性能,仿真计算大体积混凝土内部温度及应力场.从而解决大体积混凝土在施工过程中由于内外温差过大而造成开裂的问题.以便为今后大体积混凝土施工提供借鉴.研究结论:通过对大体积混凝土温度控制技术的研究和计算分析,揭示了大体积混凝土的温度特征和变化规律,提出了大体积混凝土的温度控制标准.采用合理的混凝土配合比、适当的分层浇筑和有效的保温养护措施,可以保证主墩承台、墩身、箱梁0#块和塔柱实心段各层混凝土的内外温差控制在规定的范围内.  相似文献   

12.
由于索塔承台混凝土体积大,水化热高,导致内部温度、内表温差过大,很容易产生温度裂缝,因此有必要对其进行温度控制。采用线单元解耦算法对榕江大桥索塔承台混凝土不同浇筑方案进行数值模拟,分析浇筑厚度、冷却水及冷却水温度对混凝土温度、应力的影响,从而选择合适的浇筑及温控方案,并将现场实测数据与计算数据进行对比。研究结果表明:混凝土内部温度通常在浇筑后第3~4 d达到峰值,降温速率小于升温速率;通冷却水可降低最高温度3℃~4℃,且可增加混凝土降温速率;但降低冷却水温度对混凝土内部温度影响有限,且会增大混凝土内部应力;根据数值计算结果,承台采用分3层浇筑、冷却水温度为25℃的施工方案;实测承台第1浇筑层内部温度最大为65.8℃,内表温差最大为24.3℃,内部温度、内表温差和应力均未超过规范允许值,温控方案合理。研究成果对索塔承台大体积混凝土的浇筑及温控具有一定参考价值。  相似文献   

13.
东海大桥主通航孔斜拉桥主墩承台与钻孔桩施工设施相结合,在离岸边较远的海洋环境中一次性浇筑,通过对混凝土配合比的优化和采用混凝土表面保温保湿养护方法来控制大体积混凝土内外温差,从而控制混凝土裂纹的出现。同时介绍了承台混凝土施工过程中的温度测试的测点布置方法和温度监测结果。  相似文献   

14.
武广客运专线桥梁承台大体积混凝土施工技术   总被引:1,自引:0,他引:1  
研究目的:为了预防客运专线桥梁桩基承台大体积混凝土因为温度等原因产生裂缝,从材料选用、浇筑方式、测温控制、养护等方面对大体积混凝土承台施工提出一整套控制方案。研究结果:通过对混凝土内部温度进行理论预测和现场实际监测以及施工后承台的实体质量,说明采用本技术能有效地控制温度裂缝。  相似文献   

15.
斜拉桥大体积混凝土浇筑水化热温度监测及分析   总被引:1,自引:0,他引:1  
对北方某斜拉桥主墩承台、转体上盘、塔梁墩固结实体段及"人"字形塔脚部位的大体积混凝土浇筑过程中的水化热温度进行测试,实时掌握水化热温度发展规律,通过添加适当的粉煤灰、减水剂、缓凝剂、控制混凝土入模温度和内部设置冷却水管等措施,能够有效地控制大体积混凝土浇筑施工过程中核心与表面的温差,避免温度裂缝的产生。  相似文献   

16.
大体积混凝土板体积厚大,施工浇筑过程不易控制。如振捣的位置、时间及方式不正确,混凝土原材料本身各项指标未达到规范标准,后期养护不到位及天气等外界原因,加之混凝土早期的抗拉强度低,弹性模量小,导致混凝土开裂,会严重影响工程质量。介绍了混凝土早期裂缝产生的原因及分类,裂缝处理方法及浇筑过程的质量控制。  相似文献   

17.
吴叶莹 《铁道建筑》2007,(9):105-107
混凝土水化热引起的温度裂缝是影响工程结构安全的重要因素。文中使用规范公式计算和有限元分析两种方法,对大体积混凝土施工期裂缝产生原因进行研究。结果表明水泥水化放热时间集中,混凝土在浇筑以后两到三天达到最高温度。水池池壁长边中间区域水化热温度应力较大,当温度拉应力大于混凝土抗拉应力标准值时混凝土就会开裂,这与实际结构裂缝开展情况基本一致。  相似文献   

18.
根据温度裂缝控制理论,结合工程实例,通过大体积混凝土内外温差验算,采用降低水化热,循环水降低混凝土内部温度的方法,减小混凝土温度梯度,达到防治温度裂缝的目的。  相似文献   

19.
地下室底板大体积混凝土施工质量控制   总被引:2,自引:1,他引:1  
宋翻身 《铁道建筑》2008,(3):102-103
结合北京西客站地下行包库工程,说明了地下室底板大体积混凝土施工的工艺流程,提出了对地下室底板结构进行合理施工区段划分、设置膨胀加强带、分层浇筑、加强测温控制,以及对混凝土进行覆盖养护等具体措施,以有效克服大体积混凝土结构裂缝的产生.  相似文献   

20.
大体积混凝土在施工阶段会因水化热释放引起内外温差过大而产生裂缝,水化热温度过高,还会导致混凝土后期强度的明显损失.本文结合黄陵至延安高速公路葫芦河特大桥大体积承台工程实例,对承台大体积混凝土施工制定了具体的降温和温度监测方案,通过现场实施,保证了混凝土的质量.施工结束后,经检验未发现温度裂缝,表明施工方法与降温监测措施可行、有效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号