首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
为了合理确定高速公路夜间最高车速限制值,保障高速公路夜间行车安全,进行了驾驶人夜间距离识别与车速感知试验研究.分析了行驶速度、平曲线半径和纵坡坡度对高速公路驾驶人夜间识别距离与感知速度的量化影响,并建立了高速公路驾驶人夜间识别距离模型与感知速度模型.基于驾驶人夜间识别距离与反应制动距离间的安全行驶判别条件及驾驶人夜间感知速度模型,给出了高速公路夜间最高理论限速值与修正限速值的确定方法,并进行实际案例分析.研究结果表明:驾驶人夜间识别距离与行驶速度呈负线性相关,与平曲线半径呈正对数相关,与公路纵坡坡度呈负指数相关;驾驶人夜间感知速度与纵坡坡度无关,与实际行驶速度呈正线性相关,与平曲线半径呈负对数相关.  相似文献   

2.
为了厘清弯道路段相关线形参数对停车视距的影响,在对弯道路段车辆行驶动力学分析的基础上,建立以制动初速度、平曲线半径、弯道超高、弯道纵坡及道路附着系数为自变量的弯道路段车辆制动模型;结合驾驶人和车辆的反应时间,根据运动学原理,构建弯道路段车辆安全停车视距修正模型,通过数值分析,提出弯道路段车辆停车视距计算方法,并将弯道路段车辆停车视距计算结果与《公路路线设计规范》规定值进行对比。结果表明,随着弯道纵坡坡度、超高的增大及弯道半径的减小,停车视距逐渐增加;模型计算值普遍大于规范规定值,特别是在高车速时二者的差别较大。  相似文献   

3.
《公路》1966,(4)
第三节纵坡纵坡就是公路的上下坡。坡度越大,车辆越难行,同时费油也越多,且不安全。有拖挂车行驶的路上,坡度要小(请看表4下的说明)。说明:1.在山区工程困难地段,最大纵坡可昭表列数值增加1%至2%;2.有汽车拖挂车行驶的路线上,任何级路采用的纵坡数值不应大于4%;2.在拔海300D米以上的高原地区,最大纵坡应按表中数值酌量减低1%至3%;4.在连续升坡或降坡地段,应尽量避免设立相反坡度。第四节竖曲线在路线纵坡发生变化(改变坡度)的地点,为了行车安全、舒适和减少机件磨损,必须把纵坡交点削(或填)成圆弧形(请看图8)。竖曲线又分成凸形和凹形的两种。  相似文献   

4.
目前重型货车在下长大坡路段持续制动极易引起行车安全问题。本文提出在长大下坡路段增设辅助减速车道,在一定程度上可缓解下坡压力。因此,引入温升模型,计算车辆下坡失速模型,确定下坡安全距离,以此为缓速车道设计提供依据。首先对发动机制动和电涡流缓速器联合作用下对重型汽车下坡进行研究。其次根据车辆系统动力学,进行汽车下坡能力分析。结合对汽车在制动鼓安全温度阈值内的汽车安全下坡距离的研究,得到下坡安全距离最长坡长为10 km左右,行驶坡度平均范围为3%~7%。基于此确定辅助减速车道的设定位置。  相似文献   

5.
公路纵坡坡度和坡长限制指标的确定   总被引:4,自引:2,他引:4  
针对我国的主流货运车型与载重吨位,根据实车装载上坡试验,研究车辆在上坡行驶时,纵坡坡度与车辆行驶速度以及速度随坡长的变化规律,确定典型货车在不同坡度下的上坡性能曲线;通过速度折减量与坡长之间的关系曲线,提出基于运行速度差和满足公路服务水平要求的各级公路最大纵坡坡度与坡长限制值。  相似文献   

6.
为掌握设计时速在30km/h及以下山区旅游公路平纵线形设计方法,本文结合山区旅游公路地形地质特征,对平纵线形设计中的圆曲线最小半径、最大纵坡、最大最小坡长等设计指标进行研究并提出相应的设计建议值范围,依托我市某景区工程项目验证指标提出的合理性与安全性。研究结果表明:低速山区旅游公路车辆在30km/h、20km/h、15km/h车速下,最大坡度内,最大纵坡设计值依次为9%、10%、12%,平曲线最小半径依次为30m、15m、15m。  相似文献   

7.
山区公路纵坡坡度和坡长组合设置存在不合理,导致重载车辆爬坡速度下降过快,而诱发长大纵坡路段交通事故。在分析车辆爬坡过程中的受力情况及运行特征的基础上,以某重载汽车为例使用仿真软件建立动力学模型。在约束最大爬坡性能的前提下,对满载时重载车辆爬坡特性及车速衰减规律进行仿真。在车辆功率重量比一定的前提下,设计不同坡度下的重载车爬坡及不同入坡车速的重载车爬坡2种工况,研究车辆爬坡过程中速度衰减规律及入坡车速和纵坡坡度对爬坡稳定车速的影响。车速衰减曲线表明,入坡车速对爬坡稳定车速没有影响,但其与稳定坡长成正比。对于爬坡性能差的重载车辆,当入坡车速为80 km/h 时,临界坡长小于400 m;当入坡车速为60 km/h 时,临界坡长小于300 m,均低于《公路工程技术标准》的相关规定。因此,爬坡过程中当车速衰减超过20 km/h时,需设置爬坡车道。最后,结合仿真中合理坡度和坡长的组合,提出具体的爬坡车道设置方法。   相似文献   

8.
随着汽车保有量持续增加,交通事故问题仍然严重,虽然基于事故的道路线形模型研究比较成熟,但由于事故数据缺失,很多模型是否可行很难判断。以事故统计数据为基础,通过交通事故风险概率的分析研究高速公路纵断面线形指标的合理性。通过对不同分类竖曲线段和纵坡度、坡长不同组合段事故风险概率的分类统计,利用改进的管理规则对不良线形组合和事故风险概率变化趋势进行分析。以支持度和置信度作为关联规则生成的筛选条件,提升度作为关联规则关联性的评判标准,由提升度大小将关联规则的关联性分为4个不同的区间,更加直观地表达道路纵面线形与交通事故之间的关系,并基于行车安全提出了推荐指标范围。结果表明:同向竖曲线上的事故黑点明显多于反向竖曲线;大半径竖曲线接短坡或者长坡接小半径平曲线时事故黑点较多;凸曲线间的直坡段长度在100~500 m之间时事故风险概率较高;凹曲线间的直坡段长度在100~400 m之间时事故风险概率较高;凸曲线直坡长度应与竖曲线半径大小相配合,凹曲线半径应尽量取到60 000 m以上;事故风险概率随着纵坡度的增大呈现先减小后增大的趋势,当纵坡度大于4%之后事故风险概率增大较明显,当纵坡度小于0.5时,事故风险概率较高;当坡段长度小于400 m时,事故风险概率较高,尤其是坡长小于250 m时。  相似文献   

9.
我国《公路路线设计规范》对高速公路连续长大纵坡路段的平均纵坡与连续坡长进行了规定,但平均纵坡≥3%的规定在应用时掌握难度较大,针对该问题开展了补充研究。根据对已建高速公路连续长大纵坡路段平均纵坡控制指标采用情况的调查分析,2008年前为了克服高差和降低工程造价,采用最大纵坡+短缓坡段连续拉坡现象较为普遍,最大纵坡为5%时,任意连续3 km平均纵坡较容易超过4.25%,任意连续5 km以上平均纵坡在3.5%左右的情况较多,任意连续10 km平均纵坡超过4.0%的较少,缺少平均纵坡控制指标的规定,造成纵坡设计随意性较大。根据对高速公路平均纵坡与交通事故关系及连续长大纵坡路段交通事故多发位置的调查研究,连续长大纵坡长度在15 km内,交通事故多发位置一般在靠近坡底位置;大于15 km,特别是大于30 km以上,事故多发位置一般在中间的较大纵坡路段;当高速公路区间平均纵坡大于3%以上时,事故率迅速上升,而且随着坡度的增大,事故车辆所行驶的距离越短。结果表明:为了避免连续长大下坡路段出现交通事故多发点,提升交通安全性,除了应控制全路段平均纵坡指标外,还应使纵坡设计接近于平均纵坡度。提出了连续长大纵坡路段中对高差小于300 m的任意区间平均纵坡控制指标。  相似文献   

10.
针对山区高速公路中存在连续长大下坡后接主线收费站的情形,考虑到主线收费站的设置位置不仅影响着高速公路的服务水平,还影响到收费站处的交通顺畅以及收费人员的安全,因此对高速公路连续长大下坡与主线收费站间的净距研究是有必要的。通过对连续长大下坡终点后设置主线收费站的影响因素进行分析,选择以载重汽车作为计算车型,研究载重汽车在连续长大下坡行驶时制动器的温度情况;根据制动力矩与制动器温度的关系,及驶完连续长大下坡之后载重汽车制动器制动性能的衰减情况与平均坡度、坡长的关系,以最不利情况取值,考虑载重汽车的满载状态,得出在无辅助制动下可以保证载重汽车制动器仍有效的连续长大下坡坡度与坡长值,提出制动器的减速度最大衰减系数,从而可以计算出在连续长大下坡之后载重汽车制动器所能提供的减速度;最后建立了基于驾驶员标志视认距离、汽车减速距离和驾驶员判别收费站内车道距离的净距计算模型,提出在不同设计速度和过渡段纵坡坡度下,连续长大下坡终点与主线收费站之间净距的建议值。结果表明:在驶完连续长大下坡后载重汽车制动器仍有效的情况下,连续长大下坡终点与主线收费站间的净距和载重汽车制动器制动性能的衰减程度有关,且在设计速度一定的情况下,过渡段纵坡坡度越大,连续长大下坡与主线收费站间的净距越小。  相似文献   

11.
本文根据冬季冰滑路面摩擦系数实测数据论了建立寒冷地区道路线型设计技术标准的必要性,并从道路摩擦系数角度讨论了冰滑路面上车辆爬坡能力,制动滑行距离和平曲线范围内车辆行驶的稳定性,进而提出寒冷地区道路线型设计中的最大纵坡、停车视距和平曲线极限最小半径等三项指标的建议值。  相似文献   

12.
目前重型货车在下长大坡路段持续制动极易引起行车安全问题,在长大下坡路段增设辅助减速车道,在一定程度上可缓解下坡安全问题。通过理论研究行车制动器自动过程中温度变化模型,以制动器热衰退临街温度为阈值确定下坡安全距离,以此分析确定辅助减速车道的位置设置合理区间。首先对发动机制动和电涡流缓速器联合作用下对重型汽车进行下坡能力分析,通过对行车制动器安全温度阈值内的汽车安全下坡距离的研究,确定不同坡度下车辆下坡行驶安全距离,得到下坡安全距离最长坡长为10km左右,基于此确定辅助减速车道的设定位置。  相似文献   

13.
为研究城市下穿隧道纵坡段驾驶人生理和行为特征变化规律,选取22名驾驶人在早晨5:00至7:00非高峰时段,交通状况几乎无差别的环境下,开展城市下穿隧道纵坡段实车试验。利用MP150生理测试仪和ECU车速采集设备采集驾驶人的心率值和车速值,应用单因素方差分析对数据进行差异性显著检验;并分析城市下穿隧道纵坡坡度和速度对驾驶人心率增长率的影响规律,构建城市下穿隧道上下坡段坡度、速度和驾驶人心率增长率关系度量模型,量化了坡度、速度与驾驶人心率增长率之间的关系。然后采用单因素敏感性分析方法对模型中的2个自变量(坡度和速度)进行敏感性分析。结果表明:在城市下穿隧道上、下坡段行驶时,不同坡度范围下的车速和心率增长率有一定的差异性,车速和心率增长率均随坡度增大呈现先增加后减少的趋势;城市下穿隧道上、下坡段,车辆速度均是在3.5%~4.0%坡度范围下的达到最大,在城市下穿隧道上坡段行驶时,3.5%~4.0%坡度范围下的驾驶人心率增长率达到最大,而在下坡段行驶时,4.0%~4.5%坡度范围下的驾驶人心率增长率达到最大;驾驶人在城市下穿隧道下坡段行驶时,心率增长率均值均高于上坡段,驾驶人在城市下穿隧道下坡段行驶时比上坡段更紧张;驾驶人心率增长率对坡度敏感程度要高于其对速度的敏感程度,坡度的变动比速度更易引起驾驶人心率增长率的变动,驾驶人的心理紧张程度受坡度的影响较大。  相似文献   

14.
《公路》2018,(11)
为了研究山区道路长纵坡设计的安全性与合理性,以事故多发区域厦蓉高速和溪路段为例,首先通过定性分析,对事故发生诱因进行梳理分析;然后,基于路线设计规范,在对和溪路段线形安全性进行定性分析的基础上,利用国外计算模型,以坡长及平均坡度作为变量对该路段安全性进行评估。结果表明,该路段危险系数极高,存在较大安全隐患。考虑到制动失效是导致事故发生的直接原因之一,文中在对车辆制动系统温度预估模型进行归纳总结的基础上,结合和溪路段具体道路参数对车辆制动系统温度进行计算,发现车辆行驶完该路段制动系统温度高达528℃,远超极限温度(260℃)。最后,基于制动系统失效预测模型提出一种避险车道合理位置计算方法,并引入制动鼓温度、平纵曲线参数、工程造价等参数,通过层次分析法确定其权重,构建了避险车道设置位置评价体系。文中研究成果对山区长下坡道路安全评估及避险车道的合理设置具有一定的借鉴价值。  相似文献   

15.
北京国道G110拟建线方案连续下坡路段制动失灵风险分析   总被引:1,自引:0,他引:1  
为减少连续下坡路段货车制动失灵的风险,设计人员有意将坡度放缓.连续下坡路段设计展线放坡到何种程度为宜,是公路行业非常关注的问题.笔者以国道G110(北京延庆县城-昌平德胜口)拟建线连续下坡方案为例,采用货车制动毂温升模型定量分析不同坡度、坡长条件下货车制动失灵风险,为设计人员、管理人员在连续下坡纵坡技术指标选择或方案决...  相似文献   

16.
首先,比较分析了国内外高速公路纵坡设计的控制标准(如最大坡度、最小坡度和最大坡长)及其影响因素;其次,对中国现有主要的卡车动力性能进行了调查,确定了不同类型卡车的平均质量/功率比(W/P);第三,对车辆爬坡能力的理论计算进行了分析评价,确定了绘制车辆爬坡速度-距离曲线的可行途径,并根据山西省交通量的实际车辆类型及其比率,推荐了山西省纵坡设计的代表性车型,在实测车辆速度的基础上,给出了代表性车型的速度-距离曲线.最后,根据允许车辆速度差的要求,为山西省高速公路纵坡设计提出了最大坡长推荐值.  相似文献   

17.
以横断山区高速公路连续长大下坡路段为例,基于货车温升控制的长大下坡安全评价方法,分析了缓坡、超载及强制停车区对货车安全运营的影响。结果表明,连续长大下坡路段上部设置缓坡对货车制动鼓降温效果不明显,中下部路段缓坡降温效果较好,中下部缓坡越长降温梯度越大;采用均匀纵坡比陡缓相间的纵坡设计更利于行车安全;货车超载将大幅提高全路段制动鼓温度,应严格控制;提出在制动鼓温度超过200℃路段适当位置设置避险车道、增强路面抗滑性能及桥梁护栏防护等级,增设长大下坡余长提醒标志、隧道出入口过渡路段视线诱导及安全警示等措施的建议。  相似文献   

18.
通过分析高速公路平纵线形指标与事故率的关系,引入线形影响因子,提出了基于线形影响因子的高速公路基本路段安全评价方法。首先,应用回归分析的方法,确定了平曲线半径、平曲线偏角、直线段长度、竖曲线半径及纵坡坡度与事故率的关系,在此基础上分析了弯坡组合、平竖曲线组合以及长大坡组合路段上的事故率。进而,结合事故率与线形的关系,以线形影响因子表征几何线形指标对高速公路事故率的影响,据此评价高速公路的行车安全性。案例分析结果表明,基于线形影响因子确定的危险路段与由实际事故率确定的危险路段具有极高的一致性,达到了81%。   相似文献   

19.
文章结合电涡流缓速器和再生制动能量回收技术的优点,提出了能量回收式电涡流缓速器制动补偿策略。利用再生制动系统提供的制动力矩为电涡流缓速器在持续制动过程中的制动力矩热衰退予以补偿。以GB12676-2014政策法规为验证标准,车辆在满载情况下在7%的坡道上保持以30km/h的车速匀速行驶5km为仿真目标,对某商用车型进行仿真分析。验证了该策略使得实际产生的总制动力矩始终能满足驾驶员的制动需求,可以延缓电涡流缓速器温升,保障车辆行车安全。  相似文献   

20.
《公路》2020,(8)
应用PIARC刹车毂温升模型,研究了高速公路长纵下坡路段按设置缓坡和单一坡度展线两种方式下,货车到达坡底时刹车毂的温度、刹车毂温度达到200℃和260℃时离坡顶的距离3项刹车毂温度特征数据,通过对比分析得到两种展线方式下货车刹车毂升温速度特性、刹车毂升温与车辆总重规律关系和不同货车运行速度条件下刹车毂升温特性。经研究发现,单一坡度方式下货车到达坡底的刹车毂温度相较设置缓坡方式温度更低,其升温速度与下坡距离呈线性相关关系。货车运行速度相等时,随着车辆重量的增加,两种方式下货车到达坡底时刹车毂温差逐渐缩小。重量一致时,随着运行速度的变化,温度差变化不大;同时发现货车刹车毂温度达到200℃和260℃时距坡顶距离的变化规律与纵坡长度有关,得到纵坡坡长15km、20km两个界线点,当坡长小于临界坡长时,采用单一坡度展线比设置缓坡时距离坡顶的距离大,升温速度相对慢,超过临界坡长之后采用设置缓坡展线优于单一坡度展线形式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号