首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
秀山大桥为双塔三跨钢箱梁结构悬索桥,其跨径为264m+926m+357m=1547m,官山侧主塔采用扩大基础结构,秀山侧主塔采用承台和桩基础结构,官山侧和秀山侧锚碇均采用重力锚结构。秀山侧主塔位置海床基岩裸露,倾斜角度大,无覆盖层,且水深流急,最大水深为16. 1m,最大流速可达4m/s,根据图纸要求承台采用双壁钢围堰施工,且钢围堰作为防撞消能设施永久保留,钢围堰的设计、施工难度大,国内少见,可借鉴的施工经验也较少,秀山侧主塔承台钢围堰的顺利实施为今后在类似复杂海况下桥梁基础施工提供了一定的应用价值和参考价值。  相似文献   

2.
秀山大桥主桥为双塔三跨结构的悬索桥,跨径布置为264+926+357=1547m,主梁采用钢箱梁结构,官山侧主塔基础采用扩大基础结构,秀山侧主塔基础采用承台加桩基础结构,两侧的锚碇结构均为重力锚。秀山侧锚碇位于瓦窑们岛边上,大部分位于海中,采用钢管混凝土桩围堰进行施工,国内首次,海床基岩裸露,无覆盖层,水流急,可达3. 7m/s,钢管混凝土桩围堰施工难度大,国内无可借鉴的施工经验,其成功的实施为今后在类似复杂海况下桥梁基础设计与施工提供了一定的应用价值和参考价值。  相似文献   

3.
秀山大桥主桥为双塔三跨连续弹性支承体系悬索桥,跨径布置为264+926+357=1547m,加劲梁采用钢箱梁结构,官山侧主塔基础采用扩大基础,秀山侧主塔基础采用承台加桩基础,锚碇均采用重力锚形式。秀山侧主塔位置海床基岩裸露,倾斜角度大,无覆盖层且水深流急,可达4m/s,钢管桩无法直接采用振桩锤进行打设施工,钻孔平台施工难度大,国内少见,可借鉴的施工经验也较少,钻孔平台的成功搭设为今后在类似复杂海况下桥梁基础施工提供了一定的应用价值和参考价值。  相似文献   

4.
秀山大桥位于舟山外海区域,是双塔三跨钢箱梁结构悬索桥,其跨径为264m+926m+357m=1547m,塔高169m,官山侧主塔采用圆形扩大基础,秀山侧主塔采用承台和钻孔灌注桩基础,官山侧和秀山侧锚碇均采用重力锚。桥位处基岩裸露无覆盖层、水深、流急、潮差大、波浪高,最大水深103m,实测水流速达4m/s且为紊流,因瓦窑门山岛和明礁的影响,局部具有强烈旋涡,海上作业困难。受潮流、涌浪、水深、流急与裸岩的影响,钢箱梁运梁船定位难度大,国内罕见,传统抛锚定位作业无法实施。在秀山大桥钢箱梁吊装施工中,创新的采用了运梁船动力定位+辅助钢丝绳定位技术,成功克服了裸岩、水深流急、紊流复杂海域条件下运梁船定位的施工难题,节省抛锚定位等费用800多万元,为今后在类似复杂海况下桥梁施工中运梁船的定位提供了一定的应用价值和参考价值。  相似文献   

5.
秀山跨海大桥主桥为(264+926+357) m双塔三跨连续钢箱梁悬索桥,副通航孔桥为(81+4×153+81) m六跨连续-刚构变截面箱梁,引桥为17×40 m连续箱梁。该项目地处浙江舟山东海区域,海床倾斜角度大,基础多位于无(浅)覆盖层裸露基岩上,桩位处海水流速接近4 m/s,浪高可达3 m,设计基准风速44.5 m/s。根据现场水文地质条件,官山侧主塔基础设计为扩大基础,秀山侧主塔、副通航孔桥及引桥基础采用桩基础,最大水深约38 m,施工区域风-浪-流联合作用且位于倾斜裸岩处,极大增加了桩基施工难度,经方案比选,对位于无(浅)覆盖层处的秀山塔桩基础、副通航孔桥及部分引桥桩基础采用搭设钻孔平台"先桩后围堰"施工方案,其他采用插打钢板桩围堰施工。该文重点介绍秀山塔及副通航孔桥无(浅)覆盖层桩基设计与施工。  相似文献   

6.
秀山大桥为主跨926m的双塔三跨连续弹性支撑体系悬索桥,其中两塔一锚位于海中,而秀山侧主塔承台钢围堰封底及承台混凝土设计总方量较大约为12000m3,后续的主塔混凝土施工次数相对较多达到60次左右,单次最大浇筑数量约1800m3,仅靠一艘150m3/h双线混凝土拌合船供应压力较大,同时由于秀山侧水流为紊流急流,海床基岩裸露无覆盖层,俗称"光板岩",混凝土拌合船定位困难,虽通过改进定位方式可以定位住,但也仅限在平潮期供应混凝土,且桥位处海况复杂,采用此种方式施工风险较大,势必会对秀山侧主塔的施工进度有一定影响,因此海中平台混凝土拌和站的建设显得越发重要。本文以秀山侧海中平台混凝土拌和站施工为依托,介绍了海中平台混凝土拌合站基础平台的设计与施工工艺,为后续类似的施工提供经验参考。  相似文献   

7.
秀山大桥为主跨926m的双塔三跨连续弹性支承体系悬索桥,其中两塔一锚位于海中,具有山区和海上施工的双重特点。本文以秀山侧锚碇散索鞍支墩承台为例,通过对散索鞍承台位置地形、地貌等自然条件的研究,总结形成一套合理的、技术先进、安全可靠的海中钢吊箱设计方案和施工方法,也为今后类似条件下的大型钢吊箱结构设计与施工提供借鉴。  相似文献   

8.
白洋长江公路大桥主桥为主跨1 000m的双塔单跨钢桁梁悬索桥,北岸边缆跨度276m,南岸边缆跨度269m。该桥采用塔连杆+柔性中央扣支承体系,通过塔连杆的转动满足加劲梁纵向位移与转动要求。桥塔采用混凝土门形结构,北塔高142.5m,南塔高151m,基础为分离式承台+群桩基础。钢桁梁全宽36.7m,高7.5m,采用2片主桁,华伦式桁架,主桁与桥面系分离,桥面系采用钢-混组合桥面系。充分利用长江优质航道资源及桥下水深条件好的优势,钢桁梁采用30m大节段吊装。主缆采用1 860MPa锌铝合金镀层高强钢丝,吊索采用1 960MPa镀锌钢丝绳。主索鞍、散索鞍鞍体采用铸焊结合结构。主缆采用型钢锚固系统,白洋侧锚碇采用重力式嵌岩锚,宜都侧锚碇位于富水巨厚卵石层中,国内首次采用浅埋扩大基础。  相似文献   

9.
张鹏 《城市道桥与防洪》2020,(5):66-68,M0009
洞口县平溪江大桥为主跨100 m的异形钢独塔斜拉桥,跨越洞口县平溪江。该桥为双索面,塔梁墩固结体系;主梁为两侧单箱单室P-K预应力混凝土混凝土箱形梁,桥梁全宽34.6 m。拉索为平行钢丝斜拉索,冷铸锚。主塔为异形钢箱结构,拉索通过钢锚箱锚固于主塔上。主跨跨越平溪江,采用悬臂浇筑法施工;锚跨位于岸上,采用现浇支架施工。  相似文献   

10.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔悬索桥,该桥北锚碇为"带孔圆环+十字隔墙"重力式沉井基础,沉井外径66m,高43m;1号塔基础为44根φ2.0m钻孔灌注桩,2号塔基础为39根φ2.8m钻孔桩;3号塔基础为20根φ2.8m钻孔桩;南锚碇为"圆形嵌岩地下连续墙+内衬"结构形式,地下连续墙为钢筋混凝土结构,外径68m,壁厚1.5m。根据该桥基础特点,北锚碇沉井采用3轮接高、3次下沉施工;1号塔基础采用筑岛、双排防护桩施工方案;2号塔基础采用先钢围堰后平台的施工方案,钢围堰采用气囊法整体下河;3号塔基础采用先平台后围堰、单排钻孔防护桩施工方案;南锚碇采用液压铣槽机配合冲击钻施工地下连续墙的施工方案。  相似文献   

11.
温州瓯江北口大桥为高速公路和普通国道合建的通道,结合建桥条件对该桥主桥进行总体设计及结构选型。受通航孔位置、净空尺度控制,综合考虑防洪影响、结构受力和施工难度等因素,主桥采用主跨2×800m的三塔悬索桥。南边缆跨跨径为348m,北边缆跨设置6根背索,跨径为230m,两边跨均采用悬吊结构。选取平层合建和双层合建两种加劲梁方案进行比选,最终采用结构受力合理、建设难度较低的双层钢桁梁方案。为解决中塔主缆抗滑移的技术难题,该桥中塔选取整体结构刚度大、抗风稳定性好的纵向A形混凝土塔,并采用设置竖向摩擦板的中主索鞍。中塔基础采用整体性和稳定性好、能承受船舶直接撞击作用的沉井基础。边塔采用H形混凝土塔,钻孔灌注桩基础。南、北锚碇均采用安全可靠的重力式锚碇,北锚采用扩大基础,南锚采用大型沉井基础。  相似文献   

12.
曹娥江步行桥为(35+37.5+100+37.5+35)m混合梁自锚式悬索桥,半飘浮约束体系,桥面总宽7.5 m。全桥设置2根主缆,主缆采用锌铝合金镀层钢丝,抗拉强度1960 MPa。吊索采用环氧涂层预应力钢绞线,抗拉强度1860 MPa。主跨、边跨加劲梁为钢箱梁,锚固跨为预应力混凝土箱梁。桥塔为有上、下横梁的框架式混凝土结构,基础采用大直径嵌岩桩。桥梁采用“先梁后缆”的施工顺序,体系转换采用无应力状态控制法。主索鞍采用预偏技术施工,有效控制桥塔弯矩,保证结构安全。  相似文献   

13.
金芝艳 《世界桥梁》2011,(5):1-3,10
韩国光阳大桥为(357.5+1 545+357.5)m的3跨悬索桥,全长2 260 m,主跨长1 545 m,可容许18000TEU集装箱货船通航,降低了货轮撞击塔墩的风险,桥塔高270 m(塔上设暗锚头).主缆采用1 860 MPa高强度钢丝制作,主缆垂跨比为1/9,减小了锚碇基础尺寸,节约了工程总造价.采用分离式双...  相似文献   

14.
泗阳一号桥主跨为135 m的拱门形独塔斜拉桥,主塔采用混凝土结构,为拱门型塔柱,桥塔承台面以上高84 m,其中塔座高2 m,座顶高程19.163 m,塔顶高程101.163 m,在桥面以上高73.9 m(主梁中心线处),塔顺桥向偏离铅垂面5°,倾向边跨侧。大桥结构新颖,造型独特。结合该桥的结构设计及施工,探讨了主桥的设计方案和结构分析、基础及承台的施工、主塔施工方法、主梁施工方法和斜拉索施工方法。  相似文献   

15.
舟山市秀山大桥为主跨926m的三跨连续弹性支承体系悬索桥,其官山侧和秀山侧均采用重力式锚碇、分布传力式锚固系统。锚体设计采用前、后趾分离的三角造型,左、右幅支墩采用不同的基底标高,前锚室与支墩之间设置弧形加劲板进行连接,锚块过锚固系统后锚面位置后横向进行回缩,前锚室顶板分段采用预制空心板和钢壳作为底模其上整体浇注混凝土的结构形式;锚固系统将锚固板、定位桁架、定位支架等构件进行标准化设计、模块化分组,采用螺栓连接的方式现场组拼成型;利用ANSYS软件对锚体及锚固系统进行实体有限元分析,结果表明:混凝土最大拉应力控制在4.194MPa,剪力键最大滑移量控制在0.38mm。  相似文献   

16.
新建安庆至九江铁路长江大桥主航道桥采用(2×50+224+672+174+3×50)m双塔钢箱混合梁交叉索斜拉桥,半飘浮体系。该桥主梁主跨及辅助跨采用钢箱梁,总长1 056m;边跨及次边跨采用预应力混凝土箱梁,总长264m;钢-混结合段均设在辅助跨内。桥塔采用H形混凝土结构,塔高252m,上塔柱设内嵌式钢锚箱。全桥共设152对斜拉索,斜拉索采用7mm的镀锌铝合金平行钢丝,按平行双索面扇形布置,主跨跨中72m范围内斜拉索交叉设置。桥塔基础采用45根3.0m的钻孔灌注桩;边墩及辅助墩采用n形空心截面框架墩,3.0m和2.5m钻孔灌注桩基础。预应力混凝土箱梁采用支架逐孔现浇施工;钢箱梁九江侧174m辅助跨采用顶推施工,其余部分采用节段吊装施工。结构静、动力分析结果表明该桥受力、变形及运营安全、舒适性均满足规范要求。  相似文献   

17.
充分考虑桥址处自然条件和通航要求,港珠澳大桥九洲航道桥采用主跨268 m五跨连续斜拉桥。主梁采用钢-混组合梁,在主梁边跨侧设置变宽段,为桥塔提供布置空间,同时避免了引桥非标准设计。桥塔采用风帆造型,由竖直主塔柱和曲线副塔柱组成,采用钢-混组合结构;塔、梁间采用固结约束,桥塔处梁底不设横梁和支座;斜拉索采用竖琴形中央双索面;塔端锚固采用带有上拉杆的框架结构,以满足紧凑截面钢塔结构受力要求;梁端采用锚管穿过箱形联系横梁锚固,以便张拉。主墩基础采用行列式布置的嵌岩桩,单墩设22根直径2.2 m的钻孔桩。大桥设计寿命按120年考虑,钢结构外表面采用"环氧富锌底漆+环氧云铁中间漆+氟碳面漆"涂装体系,钢结构内表面采用"环氧富锌底漆+环氧厚浆漆"涂装体系,并在主梁、桥塔内设置除湿系统。主梁采用分幅大节段吊装的方法施工,钢塔采用大节段吊装后竖向转体施工。  相似文献   

18.
新建京港澳高铁安九段鳊鱼洲长江大桥南汊航道桥为主跨672 m双塔双索面钢-混混合梁交叉索斜拉桥,主跨及辅助跨主梁采用钢箱梁,标准节段长18 m,重约510 t,锚跨主梁采用预应力混凝土箱梁,重约200 t/m。根据该桥结构特点及水文地质条件,主梁采用现浇支架+多点顶推+单悬臂+双悬臂等混合方案施工。锚跨预应力混凝土箱梁采用“钻孔桩+钢管立柱+贝雷梁(大桥Ⅰ号桁梁)”支架现浇方案施工。九江侧钢梁采用单悬臂+多点顶推施工技术,边跨钢梁、合龙段与结合段同步顶推,省略了九江侧边跨合龙工序;在结合段钢梁与锚跨预应力混凝土梁之间设置锁定结构,保证了结合段施工质量。黄梅侧钢梁采用轻型墩旁托架+双悬臂+单悬臂施工技术,4号墩墩顶三节段采用轻型托架滑移施工,结合段采用浮吊整体吊装,定位后浇筑结合段混凝土,预应力张拉后进行边跨合龙;黄梅侧边跨和中跨合龙段均采用主动合龙,先边跨合龙后中跨合龙。  相似文献   

19.
南京市小龙湾跨秦淮河大桥主桥采用跨径(44+96+44)m的三跨自锚式悬索桥,双塔双索面布置,主塔采用灯塔造型,跨中主缆矢跨比为1/5.5,主缆锚固在加劲梁梁端,加劲梁为预应力混凝土结构。主塔与加劲梁采用分离的形式,桥梁纵向采用半漂浮式结构,设计构思独特。以该桥为工程背景,介绍这类桥梁设计构思,通过有限元计算分析受力特性,并对此类桥型的发展、应用前景进行分析。  相似文献   

20.
刘源  李鸥  林吉明 《世界桥梁》2021,49(2):36-42
浙江秀山大桥主桥为主跨926 m的双塔三跨连续钢箱梁悬索桥,全桥加劲梁共分89个安装节段,标准节段吊装重量212.6 t,最大吊装重量247.1 t.桥址处地理环境复杂、海洋环境恶劣,钢箱梁安装难度大.根据现场实际情况,钢箱梁中跨由跨中向桥塔方向对称吊装,两岸边跨由锚碇向桥塔方向对称吊装,先合龙中跨再合龙边跨.施工过程...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号