共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
笔者对汽车保有量和维修需求量的预测方法进行了分析比较,并根据历史原始数据进行了预测和分析,所得结果为测定重庆市汽车维修行业发展规划提供了科学的依据。 相似文献
6.
基于熵值法的城市汽车保有量组合预测 总被引:1,自引:0,他引:1
分析灰色系统、多元回归、指数平滑、神经网络4种预测方法的特点并利用它们分别对城市汽车保有量进行预测,在此基础上通过熵值法确定各预测模型的加权系数,建立组合预测模型,最后将1995-2007年汽车保有量的各预测值与实际值进行比较,结果表明该组合预测法精度较高,实用性更强。 相似文献
7.
8.
基于遗传BP算法的我国汽车保有量预测 总被引:1,自引:0,他引:1
在对我国中长期汽车保有量预测时,针对传统BP算法的不足,采用遗传算法优化BP算法的连接权值,使优化后的BP网络的训练速度和预测精度得到了有效提高,说明该方法具有较好的实用性和推广价值. 相似文献
9.
基于PCA和HMM的汽车保有量预测方法 总被引:1,自引:0,他引:1
分析了常用的汽车保有量预测方法,提出了一种新的基于主成分分析和隐马尔可夫模型的汽车保有量预测方法.选取国民总收入、人均GDP、人口总数量、城市化率、固定资产投资总额、进出口总额、城镇居民人均可支配收入、钢材产量、公路货运量、公路客运量、社会消费品零售总额11个指标作为汽车保有量的主要影响因素,运用主成分分析提取了主要影响因素的主成分.以提取的主成分与汽车保有量分别作为自变量、因变量,建立了回归分析模型.以汽车保有量回归预测值的年增长率为隐状态,以回归预测值与实际值的相对误差为可见信号,建立了隐马尔科夫模型,并对的汽车保有量回归预测值进行修正.分析结果表明:基于1994~2008年的中国汽车保有量及其主要影响因素的历史数据,应用提出的方法得到2009、2010年的汽车保有量修正值分别为6.220 96×107、7.825 12×107 veh;与2009、2010年实际汽车保有量比较,相对误差分别为-0.95%、0.30%.可见,基于主成分分析和隐马尔科夫模型的汽车保有量预测方法具有良好的预测精度,能够适用于短期预测. 相似文献
10.
立足汽车行业,整理我国2005—2019年有关汽车保有量的相关面板数据,使用PCA方法分析,确定营运公交数、轨道交通公里数、公路里程数、城市化率、汽车报废量、社会消费品零售总额、汽车销售量、人均GDP、国民生产总值9项因素为汽车保有量影响因素.利用PC A分析后得出的7项主要影响因素构建汽车保有量综合影响指标M,借鉴国际上通用的饱和指标,结合Compertz曲线模型对我国未来20年汽车保有量的发展趋势进行预测,结合实际情况测算出我国汽车保有量.该模型由于引入综合影响指标M,所以在预测过程中考虑到更多的参数影响,提高预测精度.结果显示:我国汽车保有量已经在沿着Compertz曲线的轨迹发展,但并没有达到饱和点,即将处于成熟期,2031年汽车保有量将达到3.5亿辆. 相似文献
11.
针对交通出行集计预测模型的缺陷,结合神经网络在非线性关系映射方面的优势,本文提出了交通出行预测的BP神经网络模型。作者在对BP神经网络的结构和算法进行分析的基础上,研究了交通出行预测BP神经网络模型的影响因素、模型结构和模型数据,并采用实际调查数据对模型进行了检验和应用。研究结果表明模型预测精度较高,既有很强的理论优势和解释性,又有良好的操作性.最后,文章讨论了下一步的研究方向. 相似文献
12.
大型公共建筑内人群数目及分布的在线监测是有效控制和疏散客流、保障人员安全的重要依据之一.利用公共建筑内现有的闭路电视监视系统,通过计算机视觉技术实现人群数目的自动识别是目前国外普遍采用的一种方式.文中提出了一种基于RBF神经网络的复杂场景人群目标的识别算法,利用包含行人数目信息的前景图像的投影曲线等特征数据,通过训练好的RBF神经网络直接得到该前景图像中包含的人群数目.与其他算法相比,该算法具有较高的识别准确率,在一定误差范围内可以达到较好的效果. 相似文献
13.
杨海荣 《长沙交通学院学报》2006,22(1):68-71
根据RBF网络能以任意精度逼近任意函数这一特性,将RBF网络应用于空间插值,认定地表空间坐标的空间分布可以用一复杂的非线性函数模拟。该函数是由多种因素综合作用的结果,如果以各因素为输入、对应空间坐标值为期望输出,对网络进行训练可对地理要素的空间分布进行模拟。试验表明,神经网络应用于空间插值是可行的。 相似文献
14.
利用神经网络的非线性映射特性,将神经网络应用于非线性系统辨识。利用径向基神经网络来辨识非线性系统,并对两种不同RBF神经网络辨识算法进行比较。仿真结果表明,改进的算法具有学习速度快,辨识精度高的特点。 相似文献
15.
针对平面两自由度五杆并联机器人的轨迹跟踪问题,提出了一种基于RBF神经网络的自适应PID控制方法.该控制方案利用RBF神经网络自适应学习辨识并联机器人系统的未知非线性动态,可以在线调整PID控制参数以实现高精度控制.仿真结果显示该控制策略可以精确实现对于并联五杆机器人的轨迹跟踪控制,该方法的自适应性和跟踪性能均优于传统的PID控制. 相似文献
16.
基于BP神经网络的人口预测方法研究 总被引:2,自引:0,他引:2
对人口数量的准确预测可以为制定社会经济可持续发展计划提供重要依据.文中将BP神经网络应用于人口预测,采用Matlab的神经网络工具箱函数建立神经网络预测模型,运用该模型对2002年至2015年全国乡镇人口中0~17岁年龄段的人口进行了预测.实践证明,该模型编程简单,还能克服常规语言建立预测模型存在的模型复杂、训练时间长等缺点. 相似文献
17.
针对铁路客运量在时序上的复杂非线性特征,采用径向基函数(RBF)神经网络对铁路客运量时间序列进行预测.用自相关分析技术分析时间序列的延迟特性,据此确定RBF神经网络的输入、输出向量,建立了基于MATLAB7.0环境下的RBF神经网络客运量预测模型,并用大连站实际客运量数据进行了验证.结果表明,该模型拟合精度和预测精度较高、计算速度较快. 相似文献
18.
针对BP神经网络三个不足分别加以改进,并利用改进BP神经网络建立速度预测模型,通过实例验证预测模型的有效性,同时,预测结果具有很好的适应性和真实性,可为动态交通管理提供参考. 相似文献
19.
基于径向基神经网络的大连站客运量预测 总被引:3,自引:0,他引:3
针对铁路客运量在时序上的复杂非线性特征,采用径向基函数(RBF)神经网络对铁路客运量时间序列进行预测.用自相关分析技术分析时间序列的延迟特性,据此确定RBF神经网络的输入、输出向量,建立了基于MATLAB7.0环境下的RBF神经网络客运量预测模型,并用大连站实际客运量数据进行了验证.结果表明,该模型拟合精度和预测精度较高、计算速度较快. 相似文献
20.
应用BP神经网络来对路段短时交通流进行预测,预测精度和收敛速度都不是很理想,为了克服BP神经网络自身存在的非线性逼近缺陷,依据小波的时频域特征,将小波变换和BP神经网络结合起来,提出一种基于小波神经网络的短时交通流预测方法,给出了具体的网络学习算法,并结合实地调查数据进行了对比测试,分析结果证明了小波神经网络模型对短时交通流预测的有效性. 相似文献