首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为4 A·h的21700型锂离子电池研发了蜂巢式液冷电池模块,并通过搭建的试验平台测定其充/放电过程的传热特性。结果表明:在25℃环境温度下,0.5C恒流恒压充电和1C恒流放电过程中,电池模块的最大温差均被控制在2℃以内;40℃环境温度下,1C恒流放电过程中,当冷却液流量大于1 L/min时电池模块的最大温差能保持在所要求的5℃以内。说明蜂巢式液冷电池模块冷却性能优良,可为未来电池热管理方案的设计提供技术支撑。  相似文献   

2.
为提高动力电池液冷系统和加热系统的冷却和加热效果与安全性,本文中基于理论分析和数值模拟的方法设计了一种新型冷热集成系统。其中,液冷板采用独立式盘绕铝管嵌入铝材基板结构,并设计了流量分区以适应电池模组差异化的冷却需求,而低温条件下电池模组的快速加热,则通过集成PTC热敏电阻模块来实现。实验结果表明,在环境温度为40℃条件下进行快速充电和大功率放电循环时,电池包4个分区的最高温度均低于45℃,且各分区温差在1℃左右;在环境温度为-20℃时,内部加热方案可快速将电池包温度由-20℃上升至可大电流充电的温度,且其能耗比外部循环加热方式降低41.4%。  相似文献   

3.
主要从放电容量、放电中值电压、放电能量三个方面研究了低温阶段(25℃至-20℃)与高温阶段(25℃至60℃)两阶段温度对磷酸铁锂电池性能的影响,同时还对比了低温(-20℃)充放电与常温充电低温放电两种情况下放电容量,最后考察了48V/180Ah电池组(15串)在充放电过程中电池组内不同区域的温度场分布情况。实验结果表明:对于实验的样品,低温对电池影响较大,-20℃是其低温坎;高温下电池性能变化不明显,温度50℃以上,电池性能开始下降,推荐使用温度范围0℃~50℃;常温充电相比低温充电其放电容量仅提升10%;电池组在使用过程中,最内部的单体与最外面的单体温度差异可达12℃。  相似文献   

4.
<正>(1)电动车HV蓄电池加热。HV蓄电池加热仅在充电之前或期间进行。电动车蓄电池加热的目的是以便充电。EV蓄电池的加热由蓄电池电量控制模块(BECM)基于以下条件确定:EV蓄电池荷电状态EV蓄电池模块中的温度传感器外部电源当EV蓄电池内部温度高于规定温度时,BECM将开始为EV蓄电池充电。外部电源将会通过有线车载  相似文献   

5.
于成伟 《汽车电器》2008,(10):65-65
目前市场上的铅酸蓄电池充电机多由环形变压器和整流器组成,使用中发现不连续充100Ah以下容量的铅酸蓄电池还能胜任,当连续充电或容量大于100Ah时,充电机大多会烧毁。剖析多个厂家的充电机,发现变压器次级线圈的直径多为1.35~1.45mm。经计算,充电机最大输出电流为8-10A,而给铅酸蓄电池补充充电的电流选择一般是铅酸蓄电池额定容量的10%。现以200Ah的铅酸蓄电池充电为例。正常补充充电应用20A的充电电流充电,约10h能充满电;如用8-10A的充电电流来充电,需要20-25h。充电的时间过长。用户是不允许的,也不会等待。  相似文献   

6.
为了研究HDPE改性沥青制备工艺,以AH-90#沥青为基质沥青,通过正交试验和方差极差显著性分析,得到HDPE掺量、剪切速率、剪切时间和加热温度4个因素对HDPE改性沥青指标的影响规律。通过分析,确定制备HDPE改性沥青最佳工艺参数为:剪切速率为4 500r/min,剪切时间为25min,加热温度为170℃,改性剂HDPE掺量为5%。研究结果可为HDPE改性沥青的制备和应用提供依据。  相似文献   

7.
为提高锂离子电池容量在线估计精度,本文中提出一种基于部分充电曲线特征容量在线辨识和阿伦尼乌斯容量衰减模型融合的自适应容量估计方法。针对纯电动汽车极少存在完整充电的情况,提出一种基于恒流充电电压特征点的容量在线辨识方法。该方法先利用遗传算法对缩放平移后的充电曲线进行电压特征点优化,再通过监测有关这两个不动的电压特征点的恒流充电数据,在线辨识电池的当前容量。为进一步提高容量在线估计的精度,通过增量式PID算法来融合容量在线辨识值和阿伦尼乌斯模型,进行模型参数的闭环修正。最后,交变温度寿命实验结果表明,利用本文中提出的自适应估计方法,最大估计误差不超过2%。  相似文献   

8.
为保证纯电动汽车低温性能,低温下需对动力电池制定有效的加热措施。文章基于Amesim,建立了某款动力电池系统冷却液加热模型。对比分析了低温下定目标水温与变目标水温对动力电池系统快充时间、温差、能耗影响,快充SOC5%-95%定目标水温快充时间比变目标水温快约21min,电池包最大温差增加3℃,能耗增加0.42kWh。在次基础上分析了不同定目标水温对动力电池性能影响,定目标水温每增加10℃,快充时间减少2-3min,电池包最大温差增加约1℃。最后对比了降档策策略对快充时间影响,直接降档与关闭加热器降档快充时间、电池包最大温差基本相同,能耗减小5.6%,档位波动次数减小37%。  相似文献   

9.
<正>一、故障现象有一辆2017款比亚迪E5 300纯电动汽车,配备75Ah容量的磷酸铁锂电池,工作电压为633.6V,永磁同步交流电机最大功率160 kW。长时间停放,在起动时无法上OK电(高压电),车辆无法正常行驶,仪表显示"请检查动力系统",充电连接图标点亮,连接交流充电枪能正常进入充电页面,但仪表指示充电功率为0。二、故障原因分析  相似文献   

10.
正确使用和及时维护蓄电池格外显得重要,现将我们的经验介绍如下。 1、新蓄电池进行初充电时,应按规定加入相对密度为1.25~1.285的电解液。电解液加入蓄电池之前,温度不得超过30℃。注入电解液后,应静止5~6小时,待温度低于35℃后方可开始充电,此时如液面渗入极板而降低时,应补充到高出极板上缘15mm处。初充电的过程可分为两个阶段。第一阶段。充电电流约为额定容量的1/15,充至电解液中放出气泡,单格电池端电压达2.4V为止。然后将电流降  相似文献   

11.
通过实验研究了锂离子电池1C倍率放电,20℃自然对流情况下的温升特性。测得了20℃环境温度下电池的充放电内阻特性,并根据某品牌18650型锂离子电池的物性参数以及实验测得的内阻数据建立了电池单体仿真模型,仿真计算了与实验同工况下的温度分布情况,最大误差4.9%。设计了一种包含480节电池的并行通风空气冷却散热结构,并通过正交试验进行了优化,得到了进出风孔距电池的最小距离1mm,上挡板距离电池的最小距离1mm,下挡板距离电池的最小距离1mm的最优结构,使电池组的最大温升下降了5.71℃,最大温差降低了5.06℃。并基于最优结构给出了120s后每60s改变送风方向的往复送风策略,使电池组即使在40℃、2C放电的恶劣工况下也能够工作在25℃-40℃,电池单体温差5℃以下的工作环境中。  相似文献   

12.
电动汽车电池在低温加热过程中,针对加热器的档位频繁切换和由此引发的冲击电流会缩短电池寿命的问题,提出了基于目标加热水温寻找加热平衡档位的控制方法。以目标加热水温为控制目标,由最高档位开始寻求当前条件下的平衡档位,在平衡档位下加热器水温可以长时间控制在目标值附近。对比优化前的实车测试结果,整个加热过程加热器的档位切换次数由33次减少到5次,加热时间也由57min缩短到40min,优化效果显著。  相似文献   

13.
电池组在高环境温度下以高倍率放电时,电池组温度过高、温差大,极易引发安全问题。笔者针对这一问题设计了一种新的耦合式电池热管理系统。以采用纯石蜡冷却模型作为初始模型,首先探讨不同膨胀石墨质量分数的复合相变材料对于电池组热性能的影响,得出:在30℃的环境温度下,电池组以4C倍率放电时,采用EG质量分数为12%的复合相变材料对电池组进行冷却最优。在最优复合相变材料的基础上引入液冷系统,构建克里格近似模型,采用NSGA-Ⅱ遗传算法对耦合系统寻优,得出的预测结果精度较高误差最大仅为0.21%。利用算法寻优得出的最优解与初始模型相比,电池组最高温度下降5.29℃降幅为11.46%,最大温差下降0.12℃降幅为54.09%。结果表明:相变材料与液体冷却耦合热管理系统对电池组控温效果显著。  相似文献   

14.
锂离子动力电池系统热失控扩展是造成电动汽车火灾事故的主要原因之一,文章以由圆柱形锂离子电池构成的动力电池系统为试验对象,采用加热触发单个电芯热失控的方式,通过采集电芯和模组的电压、温度等特征参数,对电芯热失控及在模组和系统范围内热扩展特性进行分析与研究。试验结果表明,电芯热失控诱发热扩展过程较为短暂,约5 s引发第二节电芯热失控;热失控发生前,触发电芯的负极采样温度高于正极,且负极温变速率平稳;热失控发生后,受正极喷射火焰影响,与之直接串接模组存在更高风险,在热扩展中受影响最大。  相似文献   

15.
为解决人工冻结技术产生冻胀融沉所引发不良后果的问题,可设置加热限位管来达到控制冻胀融沉的目的。运用有限元软件研究了设置加热限位管与自然解冻对冻土温度场发展的影响规律,主要结论:无需加热时,间距800 mm单排冻结管在冻结50天时冻土厚度可达2.4 m;当限位管循环5 ℃热盐水之后,各点温度都有明显上升,离限位管越近温度受影响越大,随着时间的推移,各点温度趋于稳定,最终冻土厚度约1.4 m;而自然解冻工况下冻土帷幕最终厚度约1.2 m,整个冻土帷幕温度趋于一致、强度变得均匀,单从最终形成的冻土帷幕来看,自然  相似文献   

16.
电动汽车锂离子电池的生热特性   总被引:1,自引:0,他引:1  
对锂离子电池生热特性的研究是电动汽车动力电池热管理设计的基础。文章以电动汽车用11A·h电池单体为例,进行有限元建模分析,比较了它在不同环境温度下的生热特性。经过试验验证,测试结果与仿真分析相符合,该电池在环境温度为-20~40℃时以1C放电终止,温升为20℃左右。指出由于该电池推荐工作温度为30~55℃,因此使用时电池外部应配有加热系统;当电池放电倍率始终小于1C时,可不配置强制冷却系统。  相似文献   

17.
基于能量桩的桥面工程主动式融雪除冰技术作为一种新型桥面融雪除冰技术,具有环保、节能等技术优势。依托江阴市征存路观风桥市政桥梁工程,开展能量桩供热桥面板的换热效率与热-力响应特性现场试验。在桩基础和桥面板中分别预埋聚乙烯管作为换热管,通过水泵驱动换热管中的流体循环,提取浅层地温能供热桥面板;沿桩身深度方向和在桥面板中布设了温度-应变传感器,用于监测试验过程中相应位置的温度和应变。试验分析冬季工况下,一根20 m的能量桩供热20 m2的桥面板时,流体、桥面板、桩的温度变化以及桥面板和能量桩的热致应力分布。研究结果表明:根据现场试验条件,环境温度为-4℃时,20 m能量桩供热20 m2桥面板可保证桥面板表面温度始终高于0℃,即平均每延米能量桩热泵系统可保障1 m2桥面板不冻结;温度的改变使得能量桩和桥面板中产生热致应力,桩身最大轴向热致应力出现在桩深10 m (50%桩长)处,约为-1.05 MPa,为混凝土抗拉强度(2.0 MPa)的52.2%,桩身最大轴向热致应力的温度响应约为0.205 MPa·℃-1;桥面板中最大热致应力为0.77 MPa,为混凝土抗压强度(26.8 MPa)的2.9%,热致应力的温度响应为0.086 MPa·℃-1;能量桩上部受到最大正摩阻力为21.1 kPa,下部受到最大负摩阻力为13.3 kPa;试验结束时桩顶热致位移为-0.239 mm,约0.03%桩径。  相似文献   

18.
程英伟  何晓鸣 《公路》2012,(4):54-58
利用正交试验对剑麻纤维沥青混凝土混合料的拌和成型工艺进行研究。在固定配合比的前题下,以拌和方案、沥青加热温度、集料加热温度和成型温度为试验因素,模拟路面施工的各种拌和成型情况设计了L9正交表分别进行马歇尔试验。运用极差分析法对试验结果进行分析,确定了纤维沥青混合料拌和成型的优选方案为"同步法拌和+沥青加热温度为175℃+集料加热温度为206℃+成型温度为165℃"。最后分析了几种试验因素对试验指标的影响机理。  相似文献   

19.
为了实现PRPLAST.S沥青混合料温拌效果,对AC-20CPRPLAST.S温拌沥青混合料的集料加热温度、沥青加热温度进行室内试拌试验及性能研究。研究表明:当该混合料集料加热温度为160-170℃和普通沥青加热温度为150-160℃时,既可使PRPLAST.S抗车辙剂软化,又可以达到温拌施工的效果。对PRPLAST.S温拌及热拌沥青混合料性能进行对比,发现PRPLAST.S温拌沥青混合料的性能与热拌沥青混合料性能基本相当。与浸水马歇尔试验相比,以冻融劈裂试验评价标准作为PRPLAST.S温拌沥青混合料水稳定性的主控标准更为合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号