首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 562 毫秒
1.
针对小型船舶的斜向靠泊问题,根据英国标准Maritime Structures-Part 4:Code of practice for design of fendering and mooring systems(BS 6349-4:1994)得到了该情况下船舶撞击能量的计算方法。以广州珠江某码头中三角靠船钢管桩簇为例,探讨该结构在不同角度斜向船舶撞击力作用下的桩身性状变化规律,结果表明:当船舶斜向靠泊时,沿切向的撞击力不可忽略;对于该工程实例中的钢桩簇而言,船舶撞击力合力、桩身最大应力以及桩顶最大位移随船舶撞击角度的变化均呈现出"先增后减"的趋势,计算得到该工程实例中斜向靠泊的最不利船舶撞击角度参考值约在20°~22°。建议在类似工程设计时应充分考虑到船舶斜向靠泊问题的重要性,保证结构的使用安全。  相似文献   

2.
《水道港口》2014,(4):422-426
采用数学理论推导与动力时程仿真计算相结合的方式,对靠泊船舶撞击作用下高桩码头结构的动力响应及动力放大效应进行了研究,获得了多自由度结构在单点冲击荷载作用下的动力响应公式,推荐了数值计算时船舶撞击荷载的时程曲线类型及持时,获取了船舶靠泊撞击荷载下高桩码头结构的动力放大效应规律。计算与分析结果表明:码头结构设计时船舶撞击荷载的取值应充分考虑码头结构的动力放大效应;靠泊船舶撞击下的高桩码头结构对撞击荷载的动力放大系数推荐为2.0。  相似文献   

3.
《港工技术》2021,58(3)
本文通过从业主收集的LNG码头船舶资料,运用蒙特卡罗(MonteCarlo)方法研究了英标计算不正常靠泊撞击能的分项系数,结果表明英标(BS6349-4)的分项系数2明显偏大。通过将本文方法应用于菲律宾某LNG码头,并将结果与国外认可度高的英标(BS6349-4)进行比较,表明应用本文推荐的设计方法可减小橡胶护弦型号,从而减小撞击力,对于墩式码头具有明显的经济效益。  相似文献   

4.
船舶撞击码头所产生的撞击力,是码头设计时的重要荷载,合理确定它的值很重要。由于相关影响因素很多,船舶撞击力计算公式尚存在一定差异,特别是针对大型油轮系靠泊外海开敞式码头时的船舶撞击力。分析国内外各种计算理论中的几个代表性公式,并进行比较分析。国内行业规范对船舶撞击力的计算值相较国外研究成果及物理试验结果均偏小,为了合理确定大型油轮系靠泊外海开敞式码头时的船舶撞击力值,对现行《港口工程荷载规范》采用的计算公式提出了改进建议。  相似文献   

5.
以江苏某重力式船闸闸室结构为例,采用ABAQUS软件建立船舶-闸室结构-土体三维有限元模型,对船舶撞击闸室进行瞬态动力分析,得到不同工况下的撞击力时程曲线和撞击力值等结果。研究结果表明:船舶撞击闸室的法向平均撞击力大小与船舶排水量的12次方、撞击速度的1次方、撞击角度的1次方成线性关系;将软件模拟的船舶法向撞击力数值与依据JTJ 307—2001《船闸水工建筑物设计规范》得到的计算值比较,发现规范公式得到的数值普遍偏小,低估了过闸船舶撞击力的影响。  相似文献   

6.
李欢 《水运工程》2020,(6):158-165
桩基-重力式复合结构的连接节点处受力集中、应力大,且两种材料之间的连接,是该结构最关键和薄弱的部位。利用ABAQUS软件建立桩基-重力式靠船墩模型,分析连接节点在船舶撞击荷载下的响应,并研究不同因素的影响。结果表明,在船舶靠泊撞击荷载下,桩基-重力式复合结构前排连接节点的位移和受拉损伤系数峰值略大于后两排,最大主应力峰值出现在前排桩与沉箱连接节点前侧。桩的埋入深度应不小于1倍桩径,当埋入深度超过1倍桩径后,增大埋入深度对改善连接节点受力特性效果不明显;增大桩径尺寸是改善连接节点的受力特性最有效的措施,提高沉箱高度是改善连接节点的受力特性较为经济合理的措施。同时,可设置构造措施提高连接节点的承载力。  相似文献   

7.
高桩码头排架船舶撞击力分配系数的空间整体研究   总被引:1,自引:0,他引:1  
刘松 《港工技术》1998,(2):24-34,60
对5跨排架分段的高桩梁板、高桩框架和全直桩连片式码头的靠船平台,就其在船舶撞击力作用下,用弹性力学方法计算平台各排架相应撞击点的节点在撞击力方向上的相对位移,以此对各排架的船舶撞击力的分配系数进行比较分析。  相似文献   

8.
以3万吨级船舶以较快速度平行靠泊高桩码头为例,对不同方法计算出的最大船舶撞击力进行比较分析。应用有限元方法对船舶撞击码头的过程进行了数值模拟,根据码头结构产生的最大拉、压应力和混凝土强度破坏准则判断码头的损伤情况,由此确定码头升级改造的可行性。  相似文献   

9.
为确保LNG船舶靠泊安全,对浙江LNG接收站工程进行了船舶靠泊物理模型试验。采用牵引船模及直流力矩电机调节速度的方法,模拟了船舶不同靠泊速度和不同偏心距的靠泊方式。试验表明,船舶靠泊角度为5°时,4个护舷受力不均,1#护舷先受力且受力最大;不同偏心距条件下的撞击力没有明显规律,且相差不大;靠泊速度为0.15 m/s条件下,静水靠泊和顶流靠泊时设计护舷型号可满足要求,横浪1.5m时靠泊则撞击力不满足要求。建议尽量减小靠泊角度,使得护舷受力均匀,以减少靠泊时的撞击力。  相似文献   

10.
通过建立包含船、护舷、码头的有限元模型,给定船舶的靠泊速度模拟了船舶靠泊的全过程,得到更符合实际情况的船舶撞击力变化曲线和码头结构的动力反应。研究发现因为叉桩扭角的影响,横向的船舶撞击力在码头较薄弱的纵向也会产生较大的纵向力,最大可达撞击力峰值的6%~8%,这是规范所不曾考虑的。通过对比5种不同的桩基布置方式的分配系数,可得出全对称布置方式优于非对称布置方式的结论。  相似文献   

11.
利用大型有限元计算软件ANSYS的参数化语言APDL进行二次开发,对波浪上托压强作用下桩基-重力式复合结构码头面板的动力特性进行研究,结果表明:1)波浪缓变压强作用下码头面板内力的动静力计算结果基本相等,缓变压强的动力放大作用很不明显;2)波浪冲击压强作用下码头面板内力的动力计算结果随着冲击压强频率的增大而迅速减小,当冲击压强频率大于80 Hz后,动力计算结果约为静力计算结果的0.2倍。  相似文献   

12.
通过有限元计算软件ANSYS,对波浪上托力作用下高桩码头结构进行动力分析。研究结果表明:波浪缓变压强 作用下,采用动力计算和采用静力计算得到的码头结构各处的内力基本相同,波浪缓变压强可等效为静力来计算码头结构 内力;波浪冲击压强作用下,采用动力计算得到的码头结构内力明显小于静力计算结果,波浪冲击压作用下的高桩码头结构 宜进行动力分析;由于波浪上托力频率与码头结构自振频率相差甚远,因此其作用下的高桩码头结构不会产生共振现象。  相似文献   

13.
基于25万吨级矿石码头船舶系泊条件物理模型试验成果,分析了波、流共同作用下设计船型在不同系缆方式下,包括3种缆绳数量、2种系缆点布置时的船舶运动量、系缆力和撞击力的船舶系泊条件,比较各系缆方式的优劣,对设计方案的系缆方式提出了建议。  相似文献   

14.
Marine engineering structures may be subjected to various levels of vessel collisions, causing different degrees of damage to the RC piles. However, the influence of different combinations of impact mass and velocity under the same initial kinetic energy or momentum on the impact behavior of RC piles has not been explored. A numerical investigation of the impact responses of RC pile structures (including plumb piles and inclined pile groups) considering the material strain rate effect is carried out using the software ABAQUS/Explicit in this paper. Parametric studies are conducted based on the validated finite element models of RC piles subjected to horizontal impact. The internal force distributions, as well as the effect of the impact kinetic energy and the momentum (including different combinations of impact mass and initial velocity) on the impact response of RC piles, are discussed. The results indicate that the development path of the bending moment‒overall structural displacement curves in the plastic hinge regions of RC piles are almost identical under both impact and static loading conditions. Compared to momentum, the impact response of RC piles is insensitive to the variation of impact kinetic energy with different combinations of impact mass and velocity. Therefore, the impact kinetic energy is more suitable for evaluating the structural deformation of RC piles after impact. Finally, a performance-based impact-resistance design framework for RC piles is proposed.  相似文献   

15.
船舶撞击力在高桩码头排架中的分配研究   总被引:2,自引:1,他引:1  
研究船舶撞击力在码头排架中的分配情况,确定叉桩破损原因,对结构检测评估和维修设计十分重要。影响高桩码头排架间水平力分配的因素比较复杂,文章采用物理模型和基于ANSYS有限元软件建立的数学模型对码头排架中水平力的分配进行了仿真模拟,结果表明物理模型和ANSYS有限元模型试验结果吻合较好。文章采用该有限元模型研究了原体码头的受力情况。  相似文献   

16.
In this paper, special behavior of floating piers in the berthing event is assessed, and a new approach is presented for the analysis of these kinds of piers for berthing impact. Accurate estimation of berthing force is an important matter for appropriate design of mooring piles in these piers. In the pier design references, the traditional approach used in the design of fixed piers is extended to floating piers, ignoring distinctive response of these piers to berthing impact. In this paper, the fact of mobility and flexibility of structural system of floating piers are taken into consideration, and it is proved that energy absorption mechanism in these piers is different from that of fixed piers. Thus a new analytical approach and corresponding closed form formulations are presented in this paper for evaluating impact energy and induced berthing forces in these piers. The validity of presented method is shown by numerical simulations. Comparison of results of analysis by new and traditional methods in two typical piers shows that the traditional method underestimates berthing force in floating piers.  相似文献   

17.
为探讨超大型油轮在现有码头停靠、作业时的系泊情况,采用船舶系泊物理模型试验方法,分析研究了40万吨级油轮系泊作业时在长周期波及波浪、风、流联合作用下,系泊船舶的动态响应及对系缆力、护舷撞击力的影响。得出了40万吨级油轮在系泊作业过程中在不同波高及周期的波浪作用下运动量、缆力、撞击力的变化规律,提出在试验条件下40万吨级油轮停靠码头系泊作业的系缆方式及应注意问题。可为40万吨级油轮系泊作业提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号