首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
波浪作用下砂质海床最大液化深度   总被引:1,自引:0,他引:1  
根据线性波浪作用下饱和海床内孔隙水压力分布的解析解和波浪作用下海床液化的判别准则,推导了均匀海床最大液化深度的计算公式,并根据该公式提出了防止海床液化措施的建议。  相似文献   

2.
基于二维动力Biot固结理论,描述了海床土骨架的应力、应变和时间的本构关系,从Galerkin加权余量法出发建立了以土骨架位移u和孔隙水压力p表达的u-p形式的有限元方程,并采Wilson-θ直接数值积分法求解时域内动力方程。数值计算结果表明,在波浪作用下,海床孔隙水压力的计算值与实测值基本吻合,用文中的理论计算模型描述沙床对波浪荷载的响应是可靠的。  相似文献   

3.
利用室内实验模拟了波浪作用并对海床土中孔隙水压力的变化进行了监测,发现不同深度处的孔压存在的滞后性,研究了滞后性的具体表现形式。然后改变波浪的周期和土样的粒度级配进行对比试验,得到影响滞后性的诸因素:饱和度、波浪周期、波高、粒度级配、渗透性。  相似文献   

4.
动力学分析选项提供了三维的平面应变或轴对称的全动力分析。基于显示差分法的计算方法,能求解全部运动方程。方程式能耦合到结构单元模型中,因此可以用于波浪产生的土—结构相互作用的分析。  相似文献   

5.
利用傅立叶级数近似法求解非线性立波作用下海床表面波压力,基于波浪作用下海床动力响应的二维准静态模型以及液化判定标准,模拟非线性立波作用下海床动力响应以及液化深度。线性与非线性立波计算结果比较表明:当相对水深较大时,非线性立波波峰处波压力出现双峰,波谷处的波压力明显大于线性立波波谷处波压力;海床中孔隙水压力在波峰时也表现出双峰型特性,且波谷时的海床压力增大;在相同波浪条件下,非线性立波作用下海床更易液化,且液化深度大于线性立波作用下液化深度。  相似文献   

6.
有限厚度非均质海床对非线性波浪响应的有限元模拟   总被引:1,自引:0,他引:1  
高福平 《中国造船》2003,44(Z1):447-452
本文在Biot多孔介质动力固结理论的基础上,对有限厚度砂质海床与非线性波浪的相互作用进行了有限元数值模拟.进行参量研究,分析了波浪非线性、海床非均质性和相对厚度等因素对海床土层内超孔隙水压力分布的影响.  相似文献   

7.
砂质海床特性极大地影响波浪与海工单桩基础结构的相互作用,而将多孔介质海床简化为刚性、 不可渗透固体海床,忽视了多孔介质海床对波浪能量的影响.研究砂质海床孔隙率、 介质颗粒平均粒径对单桩所受波浪荷载的影响,设计5种不同海床特性的波浪水槽试验.研究结果表明:在相同波浪条件下,砂质海床结构内部的孔隙流对波浪能量产生衰减作用,...  相似文献   

8.
主要针对波浪载荷作用下导管架式海洋平台结构的疲劳可靠性进行研究.采用Airy线性波浪理论,将导管架结构离散成空间梁有限单元结构;在此基础上采用结构模态分析方法,编程计算了平台结构在随机波浪载荷作用下的位移、速度、加速度和应力随机响应及其概率统计量.导管架结构疲劳可靠性分析建立在频域响应的基础上,假设结构响应的应力范围服从Rayleigh分布,利用结构应力传递函数得到结构应力响应谱,然后利用Miner线性累积损伤准则推导出结构疲劳寿命的概率分布函数,并考虑结构疲劳强度影响系数的随机性,求得结构在随机应力谱下给定疲劳寿命时的疲劳可靠性指标.文中所建立方法可用于导管架式平台结构的疲劳安全评估.  相似文献   

9.
建立ROV作业系统垂向一维动力学模型,研究随机波浪激励下的动态响应。利用振动理论对方程无因次处理,得到阻尼比和频率比与响应关系的微分方程。采用双参数的PM波谱作为波浪函数,并对其无因次化。运用龙格库塔法对随机波浪和运动方程进行求解,得到缆索最大张力与各参数的关系,并分析缆索出现松弛的情况,并与谐波激励的响应作对比。结果表明,随机激励下,缆索的最大张力在频域出现多个峰值,在频率很大的范围内保持较大的张力,但峰值张力小于谐波激励的峰值。  相似文献   

10.
建立ROV作业系统垂向一维动力学模型,研究随机波浪激励下的动态响应.利用振动理论对方程无因次处理,得到阻尼比和频率比与响应关系的微分方程.采用双参数的PM波谱作为波浪函数,并对其无因次化.运用龙格库塔法对随机波浪和运动方程进行求解,得到缆索最大张力与各参数的关系,并分析缆索出现松弛的情况,并与谐波激励的响应作对比.结果表明,随机激励下,缆索的最大张力在频域出现多个峰值,在频率很大的范围内保持较大的张力,但峰值张力小于谐波激励的峰值.  相似文献   

11.
施有志 《水道港口》2007,28(5):373-377
在强夯荷载的作用下,地基内部将引起孔隙水压力的迅速增长,孔隙水压力增长和消散的大小以及速度在一定程度上反映了土体加固效果的好坏,尤其是对饱和软粘土地基。在信息化施工过程中,孔隙水压力的消散情况还可用来控制夯击相邻遍之间的间隔时间。文中浅释不同土质的孔隙水压力产生和消散机理,并通过工程实例,分析在强夯作用下,孔隙水压力响应的规律,进一步了解强夯的加固机理和加固效果。  相似文献   

12.
基于FLOW软件建立三维数值波浪水池模型,模拟海上风力发电装置筒型基础周边的波浪场和海床表面的波压力,利用有限元软件ABAQUS建立筒型基础及周边海床的三维动力响应数值模型,研究不同波浪条件下筒型基础周边海床的动力响应和液化深度。研究结果表明:波浪作用下海上风电筒型基础迎浪侧的海床易发生液化,风力发电装置基础周围海床的液化深度随波高加大而增加,由于筒型基础的人土深度较大,筒内土体不发生液化。  相似文献   

13.
黄帅  吕悦军 《水运工程》2015,(10):158-167
基于砂质边坡的弹塑性有限元模型和室内振动台试验研究了动孔隙水压力对边坡动力响应的影响规律。研究结果表明,坡脚位置的动孔隙水压力增大趋势明显,为滑坡最易剪切滑出的位置,在实际工程中应作为重点防护位置;动孔隙水压力随着平均有效应力的增加呈现总体减小的趋势;动孔压的存在使边坡在受较大动应力作用时破坏加速;由平均主应力增量引起的孔压与土的非线性变形特性无关。无地下水时,砂质边坡的坡顶首先发生拉裂破坏,表现出明显的鞭梢效应;有地下水时边坡的破坏首先出现在坡脚。地震作用下室内试验测得的动孔隙水压力整体上小于数值模拟值,但最大误差均控制在15%以内,验证了数值模拟结果的准确性。  相似文献   

14.
海床渗流是海洋工程设计中重点考虑的因素之一,其影响着建筑物的稳定性,严重时还会引起海床液化。现有波浪与海床相互作用的有关研究尚未解决实验室内海床的模拟方法问题。基于此,进行波浪作用下可渗沙质海床模型相似率研究,通过系列波浪水槽物理模型试验,基于原型孔隙水压力与模型值相似的条件,提出实验室内模拟海床的相似准则。结果表明:沙质海床相似比尺与模型几何比尺的关系为λ海床=λ1/3。  相似文献   

15.
随机波浪作用下矩形沉箱防波堤的动力分析模型   总被引:1,自引:0,他引:1  
首次将随机波浪荷载应用于矩形沉箱防波堤的动力分析,并将其动力运动过程分为:摇摆、摇摆一滑移运动两种运动模态,同时引入了侧向阻滑板一转角弹簧一阻尼器和阻滑板一竖向弹簧一阻尼器两种模型体系,建立了相应的动力计算模型,推导出了各运动模态的动力方程,并分别采用Fortran语言编译的程序和有限元软件ANSYS对两种模型进行实施。通过实例的计算分析表明,两种模型和方法均可有效地对随机波浪作用下沉箱防波堤动力响应进行数值模拟,而后者更符合实际受力情况,精度更高。  相似文献   

16.
随机波浪作用下的船舶倾覆   总被引:14,自引:4,他引:10  
本文运用Thompson等提出的“安全池破损”理论研究不规则波浪作用下的船舶倾覆问题。安全池表征在外载荷的作用下,船舶经历足够长时间后不发生倾覆的初始条件范围。随着外载荷强度的变化,安全池的特征,包括安全池的面积和形状,将逐渐变化。  相似文献   

17.
波浪作用下带式舟桥的水弹性响应研究   总被引:5,自引:0,他引:5  
对于设计和使用在波浪和流作用下作业的浮桥,充分了解其水弹性性能尤为重要.就在国防和桥梁工程中极为重要的带式舟桥而言,预报其在波浪中的水弹性响应在实际工程中就显得十分必要.该文主要研究带式舟桥在波浪作用下的水弹性性能.首先,简要地介绍了预报浮桥动力响应的不同方法及它们与试验比较的结果;其次,在三维水弹性理论的基础上采用模态叠加法对带式舟桥的有限元模型进行了水弹性分析,同时与十分之一模型试验结果做了比较(该试验由上海交通大学海洋工程国家重点实验室承担).研究表明,文中的方法计算分析波浪中浮桥的水弹性响应是可行的.  相似文献   

18.
19.
利用波浪水槽对波浪作用下岸坡孔隙水压力响应进行试验研究,观察分析岸坡坍塌破环现象和机理,试验入射波采用椭圆余弦波。试验结果分析表明,岸坡内孔隙水压力随波高和周期的增大而增大,岸坡土体介质与介质孔隙水压力密切相关,孔隙水压力对岸坡稳定性有重要影响。  相似文献   

20.
舰船结构在波浪中的动力响应研究   总被引:2,自引:1,他引:1  
传统船舶动力学理论是基于刚体假设之上的,本文表明如何用水弹性力学方法计算这种波浪响应。这种广义理论将结构理论,流体动力学理论,海洋学和统计理论综合于一体,它既可用于船舶,也可用于一般海洋工程结构物。某驱逐舰典型对称响应的计算结果表明,在低阶模态对称运动下,切片理论可以很好地满足实际强度分析的需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号