首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在对高速铁路钢轨波磨现场调查、测试的基础上,根据铁道车辆—轨道耦合系统动力学理论,建立高速铁道车辆—板式无砟轨道动力学数值分析模型,采用现场测试得到的高速铁路钢轨波磨数据作为系统激励,研究不同深度的钢轨波磨对高速铁路轮轨相互作用、车辆运行稳定性的影响。结果表明:不同深度的钢轨波磨虽不会改变轮轨力波动的相位特征,但随着钢轨波磨深度的增加,轮轨垂向作用力、轮重减载率和轮对振动加速度均有明显增加,而构架和车体的振动加速度增加很小,可忽略不计;高速铁路钢轨波磨虽不影响乘坐舒适度,但会加速车辆簧下部件的伤损和破坏。  相似文献   

2.
钢轨波磨是一种常见的高速铁路轨道病害。为了研究钢轨波磨参数与轴箱加速度响应时频特征之间的对应关系,从理论上探索通过轴箱振动加速度识别钢轨波磨的可行性,基于车辆-轨道耦合动力学理论建立了考虑车辆主要部件柔性化的刚柔耦合动力学模型。通过与实测数据的对比,验证了模型的准确性;在研究了钢轨波磨参数与轴箱振动加速度时域信号之间因应关系的基础上提出了一种基于VMD-SPWVD的钢轨波磨时频分析方法,并验证了该方法的有效性。研究结果表明,钢轨波磨会对轴箱振动加速度信号产生较大影响;不同波深和波长下的轴箱振动加速度最大值在时域信号中的位置具有随机性;钢轨波磨参数与轴箱振动加速度均方根之间的规律性较为明显,但其作为一种时域指标无法准确定位波磨区段的位置和严重程度;相较于时域分析方法,本文提出的基于VMD-SPWVD的时频分析方法能有效反映钢轨波磨参数与轴箱振动加速度之间的因应关系,时频分析结果能准确得到钢轨波磨的特征频率且不存在干扰成分,能量幅值与钢轨波磨波深之间呈正相关,该方法可以定位波磨存在的区段并能够体现同一区段不同位置波磨的严重程度。最后采用该方法对实测数据进行分析,进一步验证了本文所述方法通过...  相似文献   

3.
针对钢轨波磨对高速列车构架稳定性及轮轨接触力的影响问题,通过构建多体动力学仿真模型,以实测钢轨波磨为轨道激励,研究某型高速动车组以不同速度级通过波磨区段时车辆稳定性及轮轨接触动力特性和不同波深、波长、波深时变率对车辆系统振动响应的规律.研究结果表明:钢轨波磨磨深越大、车速越高、波深时变率越大则车辆构架稳定性越低,轮轨接...  相似文献   

4.
应用有限元理论及ANSYS/LS-DYNA有限元仿真软件,建立三维轮轨瞬态动力学模型,分析高速铁路钢轨波磨不平顺对轮轨系统动力响应的影响特征,在此基础上,探讨钢轨波磨不平顺的识别方法。研究结果表明:钢轨波浪形磨耗会导致轮轨系统产生剧烈的高频振动,在钢轨实测波磨不平顺激扰作用下,轮轨垂向力、轴箱和钢轨垂向振动加速度等轮轨垂向动力学指标均表现出明显的高频振动特征,其高频振动频率范围位于500~700Hz,与相同速度条件下,实测钢轨波磨不平顺的主要波长成分对应;通过对轮轨系统动力响应指标进行小波包时频分析,可有效识别出钢轨波磨不平顺的波长与纵向位置。相关研究成果可为高速铁路钢轨表面短波不平顺的研究及钢轨波磨不平顺的养护维修管理提供参考。  相似文献   

5.
在对我国某地铁A型车、轨道结构、行车速度以及钢轨波磨状态等进行现场调查的基础上,根据车辆-轨道耦合系统动力学理论,建立车辆-轨道垂向耦合动力学数值分析模型,计算分析波磨波长、波深和行车速度对轮轨相互作用及车辆运行稳定性的影响,并且以轮重减载率限值标准为判定依据,计算分析了不同波长情况下波磨波深的建议控制值。研究结果表明:轮轨作用力随波磨波深和行车速度的增加而呈线性增长,随波磨波长的增加而减小;钢轨波磨和行车速度对车体振动响应的影响可以忽略,而波磨和行车速度对轮对振动响应影响十分明显,整体表现为波磨深度和行车速度越大轮对振动加速度越大,波磨波长越长轮对振动加速度越小;以0.65的轮重减载率限值标准为判定依据,分析20~60mm波长范围内波深控制指标,建议波长为20、30、40、50、60mm短波钢轨波磨波深分别达到0.05、0.04、0.06、0.06、0.09mm时进行打磨处理。  相似文献   

6.
钢轨波磨可能引起车辆部件持续振动甚至损伤,是我国高铁需要解决的重要问题之一。现有直接测量法因效率低下不能满足长大线路的检测需求,车载测量法的检测精度有待提高,这2种方法均无法有效反映出波磨对车辆部件的不利影响。因此需要一种新的检测方法,以快速发现与车辆部件振动和损伤密切相关的钢轨波磨。通过多次测试我国高铁钢轨波磨并分析轴箱振动特征,提出振动响应快速检测法。该方法能够通过高速列车上的轴箱振动加速度测试数据快速得到钢轨波磨情况和对应里程位置,为钢轨打磨提供依据。  相似文献   

7.
为研究地铁小半径曲线波磨地段列车通过对地面振动和室内二次噪声的影响,在地铁某小半径曲线波磨地段展开实车测试。在列车通过速度分别为40km/h、50km/h 和60km/h 的条件下,分别测试钢轨打磨前后隧道内钢轨、道床和隧道壁的振动加速度,地上室内和室外振动加速度、室内二次噪声。结果表明,钢轨打磨前室内振动超标约7.3~15.7dB,二次噪声超标约1.9 ~11.5dB;钢轨打磨后仅室内振动在行车速度为60km/h时超出夜间标准约1.7dB,其余均不超标。测试结果证明钢轨打磨对于减轻地铁引起的振动和二次噪声的有效性。  相似文献   

8.
对基于同步压缩小波变换提取瞬时频率的方法进行改进,使之可完整、准确地提取振动信号的瞬时频率曲线,避免因时频聚集性较差以及交叉项的干扰带来的问题。采用该方法对高速综合检测列车轴箱加速度数据进行时频分析,提取钢轨短波不平顺的瞬时频率,根据其变化特性精确定位钢轨疑似波磨和打磨痕迹区段。结果表明:轴箱加速度波形均呈现周期性;分析区段的振动数据中包含150和75mm 2种波长呈现倍数关系的强振动数据,现场测试发现该处存在较强的钢轨波磨现象,波磨波长为150mm,同时现场还存在波长为75mm的钢轨周期性打磨痕迹;75mm的钢轨周期性打磨痕迹引起轮轨系统的非线性振动,振动频率达到1 125Hz,与扣件固有频率562Hz呈倍频关系,导致扣件产生强烈的共振,从而引发轮-轨接触共振,造成钢轨表面产生塑性变形,形成塑流性波磨,在列车的反复作用下,该处产生150mm波长的波磨。  相似文献   

9.
为研究高速铁路钢轨波磨对扣件弹条寿命的影响,建立了车辆-轨道耦合动力学模型、扣件弹条瞬态有限元模型、扣件弹条疲劳寿命预测模型,仿真计算了列车高速通过波磨波长60~160 mm、波深20~160μm的钢轨波磨区段时扣件弹条的动态响应及疲劳寿命。结果表明:列车通过波磨钢轨时,钢轨对扣件的作用力及钢轨垂向位移变化曲线均发生明显的高频波动,其波动频率与钢轨波磨引起的激励频率一致,导致弹条动应力大幅增加;当波磨波深相同、波长在80 mm和130 mm时,波磨通过频率与扣件弹条固有频率接近,从而产生共振,导致扣件弹条动应力明显增大而疲劳寿命明显降低;同一波长下,随着波磨波深增加,扣件弹条动态响应加剧,疲劳寿命大幅降低。  相似文献   

10.
随着我国重载和高速铁路的发展,钢轨波磨问题日益突出。选取2条半径为300 m的曲线为观测对象,分析钢轨打磨前后钢轨波磨的波长和波深。基于C_70型铁路货车,在多体动力学软件中建立车辆-轨道耦合动力学模型,研究钢轨打磨前后轮轨动力学性能及振动加速度的变化。结果表明:钢轨打磨不会改变波磨波长,但能有效减小波深幅值,甚至完全消除波磨;波磨有残留时其波深幅值会在波长不变的情况下继续增加,而完全消除波磨区域仍会在一定时间后继续出现波磨,但波长会发生变化;钢轨打磨能明显降低机车车辆的轮轨作用力和振动加速度,波深幅值由0.78 mm降至0.12 mm后,重车和空车的轮轨垂向力分别降低23.7%和21.9%,对应的轨枕最大垂向振动加速度分别降低78.4%和81.1%。  相似文献   

11.
运用ANSYS有限元软件及SIMPACK动力学软件联合建立高速动车组刚柔耦合动力学模型,选取客运专线高速区段典型的钢轨波磨(波长120~150 mm,波深0. 02~0. 06 mm),在充分考虑柔性轮对共振模态的基础上,研究钢轨波磨对车辆动力学性能的影响。研究结果表明:轮轨垂向力、轴箱振动加速度级与构架振动加速度级均随着波深的增大而增大,随着速度的增大基本呈增大趋势,与波长呈反比关系。但个别速度及波长下由于通过频率与固有频率存在共振,会影响上述变化规律;通过频率为550~600 Hz时,一系弹簧与减振器对轴箱振动的隔振效果较差。  相似文献   

12.
采用ABAQUS软件及轮轨真实形状尺寸参数,建立轮轨高频接触有限元模型;以我国某高速铁路钢轨波磨区段实测轨道短波不平顺作为有限元模型输入,在时域和频域上对比轴箱垂向加速度仿真结果与实测数据,验证模型的准确性;仿真计算钢轨波磨区段不同幅值轨道短波不平顺工况下轮轨垂向力、轴箱垂向加速度分布特性,研究钢轨波磨指数与轨道短波不平顺幅值之间的关系。结果表明:在钢轨波磨区段,轮轨垂向力最大值与钢轨波磨指数最大值出现的位置对应良好,在轮轨不脱离接触的前提下,钢轨波磨指数与轨道短波不平顺具有较好的线性相关性;通过曲线拟合可知,在钢轨波磨波长为150 mm时,轨道短波不平顺幅值为0.10和0.12 mm时对应的钢轨波磨指数分别为5.12和6.68。  相似文献   

13.
城市轨道交通中钢轨的波磨问题不仅会影响钢轨的使用寿命,还会诱发轰鸣噪声,影响乘车环境。为探究钢轨波磨诱发轮轨轰鸣噪声的特性,开展现场波磨测试,获取真实的波磨状态下轨道不平顺数据。基于列车-轨道耦合动力学,对比常采用的美国6级轨道高低不平顺谱,分析了在实测的波磨短波不平顺激励条件下的轮轨相互作用力。将轮轨相互作用作为激励条件,分别输入考虑了详细约束条件的轮轨有限元模型中,结合边界元方法预测并分析了波磨条件下的轮轨噪声辐射特性。结果表明,钢轨波磨会显著增加轮轨振动频率在200 Hz以上的相互作用,使得轮轨振动加剧,从而导致轰鸣噪声产生。  相似文献   

14.
针对朔黄铁路半径400 m曲线区段的钢轨波磨问题实施了个性化钢轨廓形打磨,基于C80货车和曲线线路参数建立了车辆-轨道耦合动力学模型,仿真研究了钢轨打磨前后各项车辆动力学性能、曲线通过能力,给出了波长200~500 mm时打磨前后波深安全限值。结果表明:钢轨打磨很难彻底消除波长300 mm以上的波磨,但可以大幅降低轮轨力、轮轨蠕滑力、车体和侧架振动加速度等动力学指标;钢轨打磨后曲线上股轮轨接触形式由轨顶和轨侧两点接触变为贴合式接触,且上下股轮径差增大,车辆通过能力和安全性提升,钢轨磨耗指数显著降低,相较打磨前波深安全限值提升约0.2 mm。  相似文献   

15.
随着既有高速铁路运营列车不断恢复设计速度运行,亟需研究列车运行速度提高对车体加速度的影响规律,进而判断列车提速是否满足乘客舒适性指标.通过对综合检测列车实测数据的统计分析及车辆动力学仿真计算,研究不同运行速度条件下的车体振动加速度变化规律以及相互之间的关联关系.结果表明:综合检测列车不同速度实测条件下,车体加速度比与运...  相似文献   

16.
定期打磨钢轨可降低钢轨粗糙度,进而有效降低轮轨滚动噪声和车内噪声。针对某区段钢轨波磨导致的异常车内噪声问题,对该区段的钢轨波磨及客室与司机室的车内噪声进行现场测试和分析。研究结果表明:钢轨打磨前的司机室和客室的噪声主频段为420~670 Hz,与地铁列车通过该区段波长为25 mm和40 mm波磨时的通过频率基本一致;钢轨打磨后,车内噪声明显降低,客室噪声幅值降低了11.4 dB(A),司机室噪声幅值降低了9.8 dB(A)。针对车内噪声控制提出钢轨打磨限值:当钢轨粗糙度在大部分频带范围内超过钢轨粗糙度限值3 dB或6 dB时,建议对该钢轨进行打磨。  相似文献   

17.
车轮多边形磨耗和钢轨波磨磨耗普遍存在于服役列车和典型线路上,针对这2种磨耗形式下的轮轨力学特性开展研究.建立柔性轮对的CRH3型高速列车刚柔耦合模型,构建车轮多边形与钢轨波磨的数学模型,分析200~350 km/h速度级下,波深、幅值均为0.01~0.04 mm,20~24阶车轮多边形磨耗与120~150 mm波长的钢轨波磨磨耗下对轮轨力的影响.研究结果表明:不同速度级下,车轮多边形阶次为20阶时,轮轨垂向力随着速度的增加而增大;改变车轮多边形的阶数、幅值,轮轨垂向力的大小随着多边形的阶次、幅值增大而增大;在考虑通过钢轨波磨区段的车轮多边形磨耗影响下,轮轨垂向力会出现明显的拍振现象,并且出现2个主频;当多边形阶次增加,轮轨垂向力的大小有所增大,但随着钢轨波磨波长的增加呈减小的趋势;当列车运行速度为300 km/h,车轮多边形幅值达到0.04 mm,车轮多边形阶数大于20阶,需要及时对车轮或钢轨进行镟修打磨工作,建议车轮多边形阶数为22阶、23阶、24阶分别对应钢轨波磨波深限值为0.04,0.03和0.024 mm.  相似文献   

18.
钢轨波磨是重载铁路上常见的一种病害,且波磨波长范围较广,为研究列车经过不同波长的波磨区段时轮轨垂向力变化情况,利用ABAQUS软件建立有限元模型,仿真计算不同工况条件下的重载线路轮轨垂向力响应。首先,结合重载铁路轴箱加速度的分析和现场复核,归纳钢轨波磨区段主要参数特征;接着,根据归纳的波磨特征建立有限元仿真模型并利用既有实测数据验证仿真结果的正确性;然后,利用控制变量法计算轮轨动力学在不同车辆轴重、运行速度、扣件刚度和弹簧阻尼参数下的影响特性。最后,通过比较不同波长下的轮轨垂向力发现,相同工况下,重载铁路短波长波磨区段能引起轮轨垂向力更大范围的幅值波动。因此,重载铁路产生钢轨波磨初期,为避免异常的轮轨力,要及时打磨。  相似文献   

19.
针对某地铁曲线路段钢轨波磨频发的问题,现场测量了20处钢轨的波磨,并以该实测的波磨作为激励,利用车辆—轨道耦合动力学模型,研究波磨对轮轨系统动力特性的影响规律。结果表明:该地铁波磨的纵向长度为1.5~3.0m,最大波深为0.2~0.4mm,波长范围在140~200mm,接近或者达到钢轨打磨限值,但是轮轨系统响应并未超限;波磨波深与轮轨垂向力、轮对垂向加速度和钢轨垂向加速度都没有明显的对应关系;波深时变率与钢轨垂向加速度没有明显的对应关系,但与轮轨垂向力和轮对垂向加速度都有较明显的线性对应关系,波磨波深变化快的位置,即波深时变率的峰谷值附近,都对应着轮轨垂向力和轮对垂向加速度的极值。由于波深时变率与轮轨垂向力和轮对垂向加速度之间有明显、一致的线性对应关系,基于波磨波深时变率的钢轨打磨标准比基于波深的打磨标准更加直观和合理。  相似文献   

20.
针对我国部分地铁线路出现振动噪声加剧及钢轨异常波磨的现实情况,研究减振轨道钢轨波磨产生原因。利用仿真软件Simpack建立包含地铁车辆和轨道结构的车辆系统动力学模型,分析车辆通过速度与轨道结构振动频率的关系以及弹性轨道结构共振特性,得到梯形轨枕轨道钢轨波磨可能形成原因。研究结果表明:在振动频率230 Hz(R1 200 m)、225 Hz(R2 000 m)以及211 Hz(R3 000 m)处,内侧钢轨与梯形轨枕出现更为明显的共振现象,仿真计算波磨波长和现场实测数据接近;对比相同曲线半径下的普通轨道和梯形轨枕轨道振动频率的分布情况,得出钢轨波磨与轨道结构固有振动特性有关。轨道结构固有振动特性及车辆曲线通过速度是造成钢轨波磨形成的关键因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号