首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 987 毫秒
1.
为研究双层桁架桥上列车位于主梁断面上、下层的气动特性,通过节段模型风洞试验对双层桁架主梁断面上列车进行测力、测压。以某大跨度公铁两用悬索桥和CRH2列车为背景,研究双层桁架主梁断面上列车在迎、背风侧时,列车位于上、下层时的三分力系数、平均风压系数以及脉动风压系数,并且分析风攻角对上、下层列车气动特性的影响。研究结果表明:1)上层列车的阻力系数要显著小于下层列车,当列车位于迎风侧时,下层列车的阻力系数可达到上层列车阻力系数的1.6倍,上、下层列车的力矩系数大小基本相同,但是上层列车的升力系数大于下层列车;上、下层列车的阻力系数随风攻角的增加逐渐减小并且两者的差值也逐渐减小。2)上层列车的迎风面、背风面的压差明显小于下层列车的情况,使得上层列车的总体阻力小于下层列车,并且上层列车的顶面、底面的压差要大于下层列车的情况,使得上层列车的总体升力大于下层列车;上层列车迎风面的平均风压随风攻角的增加而减小,下层列车则无明显变化。3)上层列车圆弧过渡段顶部和底部脉动风压系数小于下层列车,并且随着风攻角的增加,下层列车脉动风压系数减小,而上层列车无明显变化,风攻角对上层列车风压系数的脉动性影响较小。研...  相似文献   

2.
为研究间距对非对称公铁双幅主梁气动特性的影响,以某大跨度公铁双幅斜拉桥主梁断面为背景进行节段模型风洞试验,在间距L/Br=0.2~2.0范围内,测试了2种不同来流方向下双幅主梁的气动特性,分析非对称双幅主梁气动力系数、表面风压分布并推断主梁周围绕流特征,明确间距对非对称公铁双幅主梁气动干扰规律的影响规律。结果表明:无论风向角α=0°或α=180°,上游主梁气动力系数、表面风压分布和绕流方式受间距影响程度相对较小,与单幅主梁气动特性和绕流方式相似;但下游主梁气动特性受间距影响较大,且完全不同于单幅主梁,间隙处的绕流形式随间距的增大而发生变化,下游主梁气动力系数、平均风压系数曲线和脉动风压曲线也表现出完全不同的规律;且间距越大,下游主梁气动特性和绕流方式越接近于单幅主梁。公路主梁的流线性相比于铁路主梁更强,这种气动外形差异导致2种来流方向下非对称双幅主梁气动特性和绕流形式不同,间距在L/Br=0.2~2.0范围内,气动干扰对其影响规律也完全不同。如α=0°时,双主梁上表面始终为“单一钝体流态”;但α=180°时,双主梁上表面属于“剪切层附着流态”,间距不同,上游公路主梁尾流附着于下游铁路主...  相似文献   

3.
采用几何缩尺比为1∶40的节段模型,进行天兴州公铁两用大桥气动参数的风洞试验,测量其主桁梁和列车的静力三分力系数、桁梁的气动导数。分析上、下游不同方向来流,桥上有无列车,列车不同位置和不同队列数等对桁梁和列车三分力系数的影响。在均匀流条件下,用自由振动法测量气动导数,采用加权整体最小二乘法对桁梁气动导数进行识别。分析表明:天兴州公铁两用大桥主梁断面具备气动稳定的必要条件;上游来流和下游来流的三分力系数差别不大,小攻角时差别更小;列车在下风侧时的桁梁三分力系数较列车在上风侧时大;列车在桥上运行时,会增大桁梁的升力系数和力矩系数,降低桁梁的阻力系数。  相似文献   

4.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

5.
全封闭声屏障作为一种新型声屏障型式已在部分高铁线路上应用,以840 m长全封闭声屏障为研究对象,在其入口、1/8跨、1/4跨、3/8跨、整体跨中位置5个断面处布设风压传感器,测试列车以不同速度级通过及会车时声屏障表面列车风压特性.测试分析结果表明:单列动车组通过全封闭声屏障区段时,列车风压呈"正-负-负-正"交变特性,...  相似文献   

6.
在风-车-桥耦舍系统中,不同交通状态车辆将引起桥梁气动力和局部风压的变化。采用测压法测试了不同车流下桥梁断面三分力系数随攻角的变化情况,研究了不同车流下车辆对三分力系数以及局部风压的影响。研究结果表明:在堵车情况下车辆对桥梁断面三分力影响最大,车辆引起桥梁阻力系数和升力矩系数显著减小,使升力系数增大。在车桥耦舍风场作用下,桥梁顶面迎风侧压力值产生由正到负的剧烈幅值变化。  相似文献   

7.
在风洞试验室建立2种大气紊流场,并以某钢桁梁和1列高速列车为例建立1∶29.7的车桥节段模型,进行横向紊流风作用下桁架梁上列车气动特性的试验。采用同步测压法得到静止列车上的气动力分布,研究列车在不同位置、不同风攻角以及不同紊流场下的侧向力系数和气动导纳函数。结果表明:两车交汇时位于迎风侧列车的侧向力系数最大,列车单车位于背风侧时的侧向力系数相对最小,在-3°风攻角时的列车侧向力系数比+3°风攻角时大,紊流场对列车的侧向力系数有一定的影响,高紊流场中的列车侧向力系数相对更大;列车位于迎风侧(单车迎风侧和双车迎风侧)时,其侧向力气动导纳相对较小,而升力气动导纳相对较大;当折减频率小于0.1时,列车侧向力气动导纳在+3°风攻角时最大,升力气动导纳在-3°风攻角时最大;紊流积分尺度越大,列车气动导纳相对越大。在对试验影响因素总结的基础上,提出列车侧向力和升力的气动导纳函数拟合公式。  相似文献   

8.
针对高速铁路封闭式声屏障在列车风与横风作用下的风压荷载问题,采用中南大学自主研发的横风-移动列车风洞试验系统,研究横风和列车风作用下声屏障的风压荷载分布.研究结果表明:圆形断面封闭式声屏障外壁风压系数分布沿环向先减小后增大,与单圆柱的风压分布大致相似,给定风速下最大负风压系数-3.38;单车通过声屏障时脉动风压幅值与车速平方近似成正比,同一截面风压沿环向非均匀分布,近侧的压力峰值高于远侧,最大相差16%;2车交会时,交会区域风压峰值明显增大且极值风压出现在交会截面,其值约为单车通过时极值风压的2倍.  相似文献   

9.
以南京大胜关长江大桥地铁搭载段为研究背景,通过风洞试验,探究不同风攻角、列车位置及附属设施状态下地铁列车气动力系数变化规律,进而揭示地铁列车气动特性对列车运行稳定性影响的规律。研究结果表明:风攻角对双线在轨列车稳定性影响更大;当桥梁无附属设施,风攻角的增大不利于迎风侧列车稳定性,双线在轨列车比单线在轨列车更稳定;当桥梁有附属设施,且列车位于边跨时,风攻角越大迎风侧列车越稳定,而背风侧列车则相反,当列车在中跨运行时,列车侧向力及侧向倾覆力矩系数大于边跨,而升力系数小于边跨,表明桥梁桁架改善了列车的抗倾覆性能;桥上增加附属设施后,列车的侧向力及侧向倾覆力矩系数降低,表明附属设施有一定的格挡作用。  相似文献   

10.
连续梁桥是高速铁路上的一种典型桥梁,利用计算流体力学软件对其不同截面在不同工况下的静气动性能进行了数值模拟,研究了平均风速、风攻角、宽高比以及桥上列车分布状况分别对桥梁截面三分力系数的影响.研究结果表明:风速和风攻角对桥梁的静气动性能影响显著;梁高的增大使桥梁处于不利的风荷载作用下;在桥上有列车状态下桥梁的静气动性能不如无车时稳定.  相似文献   

11.
为研究悬浮隧道的合理截面形式,采用大涡模拟法,按日本喷火湾海况条件分析了圆形、椭圆形、耳形、六边形和矩形5种截面悬浮隧道周向稳态压强分布、所受到的流体升力和阻力;以圆形断面为例模拟分析不同来流速度时悬浮隧道周围的水动力特性,以耳形断面为例分析不同迎流面宽度时悬浮隧道周围的水动力特性.模拟结果表明:耳形截面形式悬浮隧道周围压力大,稳定性好,所受升力和阻力较小,是最合理的截面形式;随来流速度的增加,悬浮隧道周围压力显著增加,升力和阻力急剧增加;迎流面宽度对悬浮隧道周围压力场分布影响很小,对结构升力和阻力影响明显.  相似文献   

12.
当速度大于300 km/h的高速列车紧急制动时,风阻制动是一种行之有效的辅助制动措施.基于三维定常不可压的黏性流场N-S和k-ε双方程模型,采用计算流体动力学方法对带制动风翼板的高速列车气动性能做初步分析,分别从列车所受气动阻力、垂向力、横向力、流场气动干扰效应、气动噪声等方面对首排制动风翼板在不同纵向位置、不同迎风角度和不同组风翼板纵向布置的选择做了详细计算说明.初步研究表明:①当头车车顶安装单排制动风翼板的高速列车在行驶速度为350 km/h的过程中采取紧急制动时,列车所受的空气制动阻力比未安装风翼板时增大约45%,所受垂向升力增大约70%;②采用风阻制动时制动风翼板迎风面所受最大压力和平均压力随着速度增大从远环境压力值呈抛物线形式增加,所受最小压力从远环境压力值呈倒抛物线形式减小;③在首排风翼板安装位置距离头车司机室前端流线型尾端连接处2m范围内,列车空气阻力随着距离的增大而降低,所受垂向升力基本保持不变,风翼板前后形成的正负压区范围逐渐变小减弱;④首排制动风翼板迎风角在45°~90°内逐渐扩大时,列车所受空气阻力基本保持不变,垂向升力呈先增大后缓降的趋势,气动干扰效应和风翼板迎风面的高压区域逐步减弱;⑤在列车头车车顶最大等间距布置多组制动风翼板时,随着风翼板布置组数的增多,列车承受的空气阻力缓慢增加,垂向升力基本保持不变,制动风翼板间气动干扰效应逐渐增强,风翼板迎风面受压呈现出第1组的受压最大,后续各组压力峰值基本保持一致,略有波动.  相似文献   

13.
基于三维非定常可压缩雷诺时均N-S方程和RNGκ-ε双方程湍流模型,采用滑移网格技术,对峡谷风作用下8车编组的高速列车进出隧道气动性能进行模拟,并对沿线风速进行监测。研究表明:列车平地上非定常数值计算所得气动力系数均方根与风洞试验结果规律一致,两者吻合较好。由于受狭道效应和峡谷中地形地貌的共同作用影响,桥上各监测点的风速呈非对称分布。列车从隧道中驶入峡谷风区和从风区驶入隧道中两过程,列车气动力系数变化有明显差别。列车在峡谷风区高速行驶过程中,列车气动力及力矩系数会因受到以峡谷风为主的地形风影响而出现明显波动,其中尾车侧向力系数和头车升力系数受影响变化最大,分别为67%和216%。  相似文献   

14.
基于有限体积法,采用流体动力学计算软件建立了列车通过设置声屏障桥梁时的空气动力学模型.应用滑移网格技术和大涡模拟法,计算了声屏障的三维非定常可压缩外流场,获得了不同速度、不同车头长度和不同车体长度列车通过桥梁时轨面以上2.15 m高处声屏障脉动压力极值、脉动压力时程曲线等.研究结果表明:声屏障所受脉动风压极值基本与车速的平方成正比;在车速相同情况下,6 m长车头列车产生的脉动风压比12 m长车头列车约大10%;200 m长车体列车通过时产生的脉动风压比100 m长车体列车约大7%.  相似文献   

15.
基于空气动力学数值模拟方法,针对列车不同部位的转向架和转向架结构表面的气动阻力分布进行分析,对高速动车组列车整车气动效应进行数值仿真。研究结果表明:转向架流场区域在靠近来流端的上部会形成部分死水区,该区域流场与外部质量交换较小,转向架结构表面在来流方向上游会形成一个正压区,在下游方向的转向架结构表面会形成小范围的负压区。列车头车转向架气动阻力明显高于中间车和尾车,其中列车头车I位转向架受到的气动阻力最大,其次是头车II位端转向架,列车的中间车和尾车转向架阻力分布较为均匀,均为头车转向架阻力的60%左右。  相似文献   

16.
李敏  高亮  谷呈朋 《铁道勘察》2014,(1):110-113
钢轨的断缝检算是无缝线路结构设计的内容之一,桥上无缝线路的断缝值与桥上扣件的布置形式及线路纵向阻力取值有关。基于有限元软件ABAQUS建立了不同断缝值的桥上无缝线路静力学与动力学计算模型,分析了不同断缝位置和30 t轴重条件下对货物列车通过断缝时钢轨的位移和受力等力学特性以及脱轨系数等动力响应评价指标的影响。计算结果表明,重载铁路桥上无缝线路设计中断缝值应采用70 mm。  相似文献   

17.
研究目的:基于车-桥耦合振动理论,以64 m简支钢桁梁桥为实例,研究重载铁路钢桁梁桥局部疲劳可靠度问题。首先建立64 m简支钢桁梁桥的车-桥动力学模型,通过现场试验结果验证模型的准确性,并确定桥梁最不利疲劳部位;然后基于Monte Carlo方法,将车速和轨道不平顺作为随机变量,随机选取100个车速和轨道不平顺的组合样本;利用Miner线性疲劳累积准则和概率密度函数方法,得到钢桥最不利疲劳部位的等效应力范围和年疲劳损伤系数的概率分布,并给出桥梁局部疲劳损伤系数与列车编组的关系式;最后分析不同列车类型和行车速度条件对桥梁疲劳损伤的影响。研究结论:(1)在考虑参数随机概率分布的条件下,桥梁最不利疲劳部位的等效应力范围和年疲劳损伤系数均服从Lognormal分布;(2)当货运列车年运量一定时,列车轴重是桥梁局部损伤的主要影响因素,桥梁的疲劳损伤随轴重增加而增大;(3)在设计时速范围内,列车速度与桥梁疲劳损伤的相关性不强;(4)本研究成果可为重载铁路钢桁梁桥设计与疲劳性能评估提供参考。  相似文献   

18.
针对宽厚比为2、圆角率为0.3的矩形柱,采用刚性模型测压风洞试验的方法,在均匀流场中对其表面风压时程在不同雷诺数和不同风向角下进行了测试。分析了不同风向角下平均阻力系数、平均升力系数和平均风压系数随雷诺数的变化规律。结果表明,随着雷诺数的增大,平均阻力系数减小,平均升力系数会产生明显的跳跃现象。迎风侧角点的风吸力会在较高雷诺数时产生明显的突增现象,随着风向角的增大,突增幅度先增大后减小。  相似文献   

19.
采用计算流体力学软件建立桥梁单体、车辆单体以及车桥组合体模型,湍流模型取标准κ-ε模型,计算各模型在不同风攻角时侧向风作用下的气动力系数.考虑风屏障对车辆、桥梁气动性能影响,建立风屏障、桥梁与车辆组合体模型,分析风屏障不同开孔率时车辆、桥梁气动力系数变化规律.结果表明:车辆位于桥上时,桥梁阻力和车辆侧力会增大;桥上车辆侧滚力矩系数明显大于车辆单独存在的情况,且车辆位于桥上迎风侧大于背风侧的情况;安装风屏障后,桥梁阻力和力矩系数随开孔率增大而降低,车辆侧力系数和力矩系数随开孔率增大而增大;为保证风屏障有效性,风屏障开孔率应小于40%.  相似文献   

20.
对3~8辆编组列车以350km· h-1速度运行时,不同速度横风作用下的气动特性进行仿真研究,并建立列车的阻力系数与列车编组辆数之间的无量纲关系.研究结果表明:对3辆车编组列车的气动特性分析不能取代对其他编成辆数列车的几动特性分析;不同编成辆数列车阻力系数随着横风风速的增加而增大,3辆车编组列车的阻力系数不超过8辆车编组的列车的一半;列车的侧向力系数和倾覆力矩系数随着列车编成辆数的增加而减小;列车编成辆数对头车的阻力系数、升力系数、侧向力系数和倾覆力矩系数影响较小,但是对尾车的影响较大;头车的侧向力系数和倾覆力矩系数明显高于尾车和中间车,尾车的倾覆力矩系数最大值不超过0.4,而头车的最大可达0.7;由于头车的气动安全性比其他位置车辆的低,用头车的气动安全性评估整个列车的气动安全性会偏于保守,但合理、可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号