首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
A zero-speed fin stabilizer system was developed for rolling control of a marine robot.As a robot steering device near the sea surface with low speed,it will have rolling motion due to disturbance from waves.Based on the working principle of a zero-speed fin stabilizer and a marine robot’s dynamic properties,a roll damping controller was designed with a master-slave structure.It was composed of a sliding mode controller and an output tracking controller that calculates the desired righting moment and drives the zero-speed fin stabilizer.The methods of input-output linearization and model reference were used to realize the tracking control.Simulations were presented to demonstrate the validity of the control law proposed.  相似文献   

2.
In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.  相似文献   

3.
A constructive method was presented to design a global robust and adaptive output feedback controller for dynamic positioning of surface ships under environmental disturbances induced by waves, wind, and ocean currents. The ship’s parameters were not required to be known. An adaptive observer was first designed to estimate the ship’s velocities and parameters. The ship position measurements were also passed through the adaptive observer to reduce high frequency measurement noise from entering the control system. Using these estimate signals, the control was then designed based on Lyapunov’s direct method to force the ship’s position and orientation to globally asymptotically converge to desired values. Simulation results illustrate the effectiveness of the proposed control system. In conclusion, the paper presented a new method to design an effective control system for dynamic positioning of surface ships.  相似文献   

4.
A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and orientation,the path following control in the horizontal plane may yield a poor performance.To deal with the negative effect induced by initial states,a temporary path generation was presented based on the relationship between the original reference path and the vehicle’s initial states.With different relative positions between the vehicle and reference path,including out of straight lines,as well as inside and outside a circle,the related temporary paths guiding the vehicle to the reference path were able to be generated in real time.The vehicle was guided to steer along the temporary path until it reached the tangent point at the reference path,where the controller was designed using the input-output feedback linearization method.Simulation results demonstrated that the proposed algorithm is effective under the three different situations mentioned above.  相似文献   

5.
The roll motions of ships advancing in heavy seas have severe impacts on the safety of crews, vessels, and cargoes; thus, it must be damped. This study presents the design of a rudder roll damping autopilot by utilizing the dual extended Kalman filter(DEKF)–trained radial basis function neural networks(RBFNN) for the surface vessels. The autopilot system constitutes the roll reduction controller and the yaw motion controller implemented in parallel. After analyzing the advantages of the DEKFtrained RBFNN control method theoretically, the ship's nonlinear model with environmental disturbances was employed to verify the performance of the proposed stabilization system. Different sailing scenarios were conducted to investigate the motion responses of the ship in waves. The results demonstrate that the DEKF RBFNN–based control system is efficient and practical in reducing roll motions and following the path for the ship sailing in waves only through rudder actions.  相似文献   

6.
[Objectives ] This paper studies a three-dimensional (3D) cooperative path-following control problem in the process of maritime search and rescue for a heterogeneous unmanned cluster system composed of unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs).[Methods ] First, kinematic models of the UAVs and USVs are established under a fixed coordinate system and body coordinate system. In order to design a 3D path-following controller suitable for motion control, an air coordinate system is established, and the path tracking error models of the UAVs and USVs are established in the Serret-Frenet coordinate system. Next, a 3D line-of-sight (LOS) guidance law is designed at the kinematic level, and a cooperative path-following control method suitable for heterogeneous clusters of marine vehicles is proposed, allowing the UAVs and USVs to track the preset parameterized path. Finally, the stability of the control system is analyzed based on the Lyapunov stability theory.[Results]The simulation results verify the effectiveness of the proposed cooperative path-following control method for heterogeneous clusters of marine vehicles.[Conclusions]The results of this study can provide references for maritime search and rescue by using the proposed cooperative path-following control method. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

7.
Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane control, based on Lyapunov theory and back-stepping techniques, was proposed. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories was accomplished. Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.  相似文献   

8.
The course-keeping control of underactuated hovercraft with two aft propellers was considered. The control of the heading error and cross-track error was accomplished by the yaw torque merely in this case. The hovercraft dynamic model is nonlinear and underactuated. At first the Controllability of course-keeping control for hovercraft was proved, then a course-keeping control law was derived that keeps hovercraft heading constant as well as minimizes the lateral movement of hovercraft. The proposed law guarantees heading error and sway error all converge to zero exponentially. Simulation tests were carried out to illustrate the effectiveness of the proposed control law. For further research, the disturbance influence would be considered in the dynamic equations.  相似文献   

9.
The problem of stabilization control of underactuated surface vessels with two independent control inputs is in vestigated inthis paper. Through transformation, a cascade property of the system is revealed. And the original nonlinear system could be divided into two subsystems: a linear subsystem and a nonlinear subsystem. The stabilization laws are derived for the two subsystems separately. A smooth time - varying feedback stabilization law with exponentially convergence rate is obtained. The proposed stabilization law guarantees all the system states converge to the equilibrium exponentially. The aim of stabilization control of underactuated surface vessels is achieved. At last, the effectiveness of the proposed algorithm is illustrated by simulation tests.  相似文献   

10.
Oceanographic survey, or other similar applications should be the applications of multiple AUVs. In this paper, the skill & simulation based hybrid control architecture (S^2BHCA) as the controller's design reference was proposed. It is a multi-robot cooperation oriented intelligent control architecture based on hybrid ideas. The S^2BHCA attempts to incorporate the virtues of the reactive controller and of the deliberative controller by introducing the concept of the "skill". The additional online task simulation ability for cooperation is supported, too. As an application, a multiple AUV control system was developed with three "skills" for the MCM mission including two different cooperative tasks. The simulation and the sea trials show that simple task expression, fast reaction and better cooperation support can be achieved by realizing the AUV controller based on the S^2BHCA.  相似文献   

11.
NTSM控制的AUV路径跟踪控制研究   总被引:3,自引:0,他引:3  
马岭  崔维成 《中国造船》2006,47(4):76-82
针对非线性欠驱动自治水下机器人(Autonomous underwater vehicle,缩写为AUV),提出了一种基于非奇异终端滑模(Non—singular terminal sliding mode,缩写为NTSM)控制的鲁棒路径跟踪控制方法。在跟踪控制系统中,采用的参考变量为非时间量,摆脱了时间因素的影响,有利于提高AUV在不确定环境中的跟踪能力。应用指数趋近律进行NTSM控制器设计,能保证系统状态在有限时间内到达平衡点。数值仿真结果验证了该控制律的路径跟踪效能。  相似文献   

12.
[目的]为提高水面欠驱动船舶的航向跟踪性能,减小航向误差,研究一种基于有限时间扩张状态观测器(FTESO)的船舶航向滑模控制方法。[方法]首先,采用预滤波器减小船舶转向时较大的航向变化率影响,利用扩张状态观测器对时变漂角进行估计,然后通过估计出的漂角及时修正航向误差。为简化控制器设计,艏摇方向上的外部扰动和内部不确定项由观测器同时估计,并在控制器设计中进行补偿。选取含积分项的滑模面,结合FTESO设计滑模控制律,并考虑输入饱和约束,最终通过李雅普诺夫理论证明控制系统的稳定性。[结果]仿真结果显示,所研究的控制方法使水面船舶能够在较短的时间内减小航向跟踪误差并收敛至0。[结论]研究成果可为水面船舶航向跟踪控制设计提供参考。  相似文献   

13.
研究一类欠驱动船舶的全局航迹跟踪问题。首先对船舶动态系统和期望动态系统分别进行全局微分同胚变换,得到航迹跟踪的误差动态方程,由此将航迹跟踪问题转化为误差动态系统的镇定问题,然后利用级联系统理论将误差动态方程的镇定问题分解为两个独立子系统的镇定问题。通过分别为子系统设计全局指数稳定控制律实现了欠驱动船舶的全局K指数航迹跟踪。仿真结果验证了所提方法的有效性。  相似文献   

14.
存在饱和输入的欠驱动船舶航迹跟踪控制   总被引:2,自引:2,他引:0  
针对控制输入存在饱和限制的欠驱动船舶的航迹跟踪问题,提出鲁棒饱和控制方法。以船舶纵向速度和艏向角速度为虚拟输入,设计饱和运动学控制器,并引入二阶滤波器形式对控制器进行简化;利用反步法并引入Nussbaum型函数,设计饱和动力学控制器,以实现对任意光滑航迹的跟踪控制,并保证跟踪误差收敛至零点附近的一个有界区域内。仿真算例验证了设计方法的有效性和鲁棒性。  相似文献   

15.
This paper presents a constructive design of new controllers that force underactuated ships under constant or slow time-varying sea loads to asymptotically track a parameterized reference path, that guarantees the distance from the ship to the reference path always be within a specified value. The control design is based on a global exponential disturbance observer, a transformation of the ship dynamics to an almost spherical form, an interpretation of the tracking errors in an earth-fixed frame, an introduction of dynamic variables to compensate for relaxation of the reference path generation, p-times differentiable step functions, and backstepping and Lyapunov's direct methods. The effectiveness of the proposed results is illustrated through simulations.  相似文献   

16.
邹韵  卜仁祥  李宗宣 《船舶工程》2020,42(10):101-104
针对船舶运动系统中内部动态不确定和外部干扰等问题,进行了欠驱动船舶路径跟踪的自抗扰方法研究。利用Backstepping设计参考航向角,并通过线性扩张状态观测器对流干扰和横向运动引起的横向漂移进行估计。其次,根据自抗扰算法对航向进行控制,采用线性扩张状态观测器对外界干扰及内部不确定项进行估计。最后仿真结果表明,在风流干扰下所设计的控制器仍能使船准确地跟踪上参考路径,验证了所提控制方案的有效性。  相似文献   

17.
针对仅使用槽道推进器提供横向推力的动力定位船舶路径跟踪控制问题,建立慢变环境干扰影响下的非线性船舶数学模型,设计带有自适应干扰补偿的反步控制算法来消除环境干扰的影响。引入平行目标接近(CB)导引算法为跟踪控制生成期望速度矢量信号,通过与所提出的自适应反步控制算法相结合,得到不受船舶驱动特性限制的全速度范围动力定位船舶导引跟踪控制算法,应用李雅普诺夫稳定性理论证明系统跟踪误差渐进收敛到零。仿真结果表明通过调整导引算法参数可以调节船舶跟踪过程表现,并可以得到较好的控制精度。  相似文献   

18.
基于Backstepping的船舶航向自适应滑模控制   总被引:1,自引:0,他引:1  
王林  陈楠  高嵬 《船电技术》2012,32(4):16-18
针对Norrbin非线性船舶运动数学模型,提出了一种基于Backstepping的自适应滑模控制策略。为了消除外界扰动的影响,引入扰动估计器的设计方法,并借助Lyapunov函数证明了该控制器可以确保闭环系统渐近稳定,使系统的跟踪误差趋于零。与传统的PID控制策略相比,具有较好的跟踪能力和较快的响应速度。  相似文献   

19.
针对船舶航向非线性运动数学模型存在不确定性误差的情况下,提出一种新颖的动态面二阶滑模智能控制方法.首先采用动态面控制(DSC)技术,以消除传统Backstepping方法中存在的"计算爆炸"问题.为了削弱滑模控制中固有的抖振效应,提高系统的鲁棒性,引用了一种新颖的二阶滑模控制方法.然后直接利用径向基神经网络技术逼近模型误差,同时采用最少学习参数(MLP)技术,以减少控制器的计算负担,所设计的控制器可以保证闭环系统中所有信号一致最终有界,并使跟踪误差任意小,最后通过仿真验证所提算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号