首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The computational fluid dynamics(CFD) method is used to numerically simulate a propeller wake flow field in open water.A sub-domain hybrid mesh method was adopted in this paper.The computation domain was separated into two sub-domains,in which tetrahedral elements were used in the inner domain to match the complicated geometry of the propeller,while hexahedral elements were used in the outer domain.The mesh was locally refined on the propeller surface and near the wake flow field,and a size function was used to control the growth rate of the grid.Sections at different axial location were used to study the spatial evolution of the propeller wake in the region ranging from the disc to one propeller diameter(D) downstream.The numerical results show that the axial velocity fluctuates along the wake flow;radial velocity,which is closely related to vortices,attenuates strongly.The trailing vortices interact with the tip vortex at the blades’ trailing edge and then separate.The strength of the vortex shrinks rapidly,and the radius decreases 20% at one diameter downstream.  相似文献   

2.
An innovative hydrodynamic theory and numerical model were developed to help improve the efficiency, accuracy, and convergence of the numerical prediction of wave drift forces on two side-by-side deepwater floating bodies. The wave drift forces were expressed by the double integration of source strength and the corresponding Green function on the body surface, which is consistent with the far field formula based on momentum conservation and sharing the advantage of near field calculations providing the drift force on each body. Numerical results were validated through comparing the general far field model and pressure integral model, as well as the middle field model developed using the software HydroStar.  相似文献   

3.
Based on a volume of fluid two-phase model imbedded in the general computational fluid dynamics code FLUENT6.3.26, the viscous flow with free surface around a model-scaled KRISO container ship (KCS) was first numerically simulated. Then with a rigid-lid-free-surface method, the underwater flow field was computed based on the mixture multiphase model to simulate the bubbly wake around the KCS hull. The realizable k-ε two-equation turbulence model and Reynolds stress model were used to analyze the effects of turbulence model on the ship bubbly wake. The air entrainment model, which is relative to the normal velocity gradient of the free surface, and the solving method were verified by the qualitatively reasonable computed results.  相似文献   

4.
Nonlinear interactions among incident wave, tank-sloshing and floating body coupling motion are investigated. The fully nonlinear sloshing and body-surface nonlinear free surface hydrodynamics is simulated using a Non-Uniform Rational B-Spline (NURBS) higher-order panel method in time domain based on the potential theory. A robust and stable improved iterative procedure (Yan and Ma, 2007) for floating bodies is used for calculating the time derivative of velocity potential and floating body motion. An energy dissipation condition based on linear theory adopted by Huang (2011) is developed to consider flow viscosity effects of sloshing flow in nonlinear model. A two-dimensional tank model test was performed to identify its validity. The present nonlinear coupling sway motion results are subsequently compared with the corresponding Rognebakke and Faltinsen (2003)’s experimental results, showing fair agreement. Thus, the numerical approach presented in this paper is expected to be very efficient and realistic in evaluating the coupling effects of nonlinear sloshing and body motion.  相似文献   

5.
A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green’s second identity to the potential functions and appropriate Green’s functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.  相似文献   

6.
To analyse a possible way to improve the propulsion performance of ships,the unstructured grid and the Reynolds Average Navier-Stokes equations were used to calculate the performance of a propeller and rudder fitted with additional thrust fins in the viscous flow field.The computational fluid dynamics software FLUENT was used to simulate the thrust and torque coefficient as a function of the advance coefficient of propeller and the thrust efficiency of additional thrust fins. The pressure and velocity flow behind the propeller was calculated. The geometrical nodes of the propeller were constituted by FORTRAN program and the NUMBS method was used to create a configuration of the propeller,which was then used by GAMMBIT to generate the calculation model. The thrust efficiency of fins was calculated as a function of the number of additional fins and the attack angles. The results of the calculations agree fairly well with experimental data,which shows that the viscous flow solution we present is useful in simulating the performance of propellers and rudders with additional fins.  相似文献   

7.
A high-efficiency propeller can enable a long mission duration for autonomous underwater vehicles (AUVs). In this study,a new method with OpenProp coupled with computational fluid dynamics was developed to design a propeller for an Explorer100 AUV. The towed system simulation of the AUV was used to measure the nominal wake, and a self-propulsion simulation was used to measure the effective wake at the disc plane just in front of a propeller. Two propellers referring to the nominal wake (propelle...  相似文献   

8.
[Objectives]In this paper, the numerical simulation method is used to study the anti-penetration performance and energy absorption mode of a stiffened plate, as well as the influence of different stiffened bars on the flight attitude of the projectile body.[Methods] Finite element software LS-DYNA is used to simulate the process of a truncated oval-nosed projectile penetrating a stiffened plate, and the results of the numerical simulation are compared with an experiment to verify the reliability of the numerical simulation method. The momentum method and mass equivalence method are used to predict the residual velocity of the projectile, and the applicability of different theoretical methods within different velocity ranges is compared. The deformation energy of different regions of the stiffened plate is then extracted to analyze the influence of the initial velocity of the projectile body on the energy absorption mode of the target plate. Finally, the structure of the stiffeners is changed and the influence of the relative position of the stiffeners on the penetration attitude of the projectile body is analyzed.[Results]The results show that the mass equivalence method is more accurate than the momentum method in predicting the residual velocity of the stiffened plate when the initial velocity of the projectile body is in the range of 300–900 m/s. The ratio of the deformation energy of the stiffened plate to the energy loss of the projectile body decreases with the increase of the initial velocity of the projectile body. The effect of a T-stiffened plate on trajectory is greater than that of a rectangular-stiffened plate.[Conclusions]The related calculation method and research results have certain reference value for research and engineering application surrounding the anti-penetration of stiffened plates. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

9.
A robust adaptive control strategy was developed to force an underactuated surface vessel to follow a reference path,despite the presence of uncertain parameters and unstructured uncertainties including exogenous disturbances and measurement noise.The reference path can be a curve or a straight line.The proposed controller was designed by using Lyapunov’s direct method and sliding mode control and backstepping techniques.Because the sway axis of the vessel was not directly actuated,two sliding surfaces were introduced,the first one in terms of the surge motion tracking errors and the second one for the yaw motion tracking errors.The adaptive control law guaranteed the uniform ultimate boundedness of the tracking errors.Numerical simulation results were provided to validate the effectiveness of the proposed controller for path following of underactuated surface vessels.  相似文献   

10.
Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the ground using an Iterative Boundary Element Method(IBEM) and the finite difference scheme. Two stand-alone sub-codes and a mother code, which enables communication between the sub-codes, are developed to solve for the self-excitation of the Wing-In-Ground(WIG) effect. The aerodynamic force exerted on the wing is calculated by the first sub-code using the IBEM, and the vertical displacement of the wing is calculated by the second sub-code using the finite difference scheme. The mother code commands the two sub-codes and can solve for the aerodynamics of the wing and operating height within seconds. The developed code system is used to solve for the force, velocity, and displacement of an NACA6409 wing at a 4° Angle of Attack(AoA) which has various numerical and experimental studies in the literature. The effects of thickness and AoA are then investigated and conclusions were drawn with respect to generated results. The proposed model provides a practical method for understanding the flight dynamics and it is specifically beneficial at the pre-design stages of a WIG effect craft.  相似文献   

11.
This paper evaluates various computational methods used to compute propeller performance, hydrodynamic side force and bending moment applied to an azimuth propulsor propeller shaft in oblique inflow. The two non-viscous models used are the BEM method and the blade element momentum theory (BEMT). RANS calculations are used to compute the loads on the propeller and the nominal wake velocity from the thruster body to be used in the BEMT model. The effect of the ship hull is also considered in the calculation by implementing the measured nominal wake of a ship hull at different propeller azimuthal positions. All the models are compared and validated against the experimental results, and the discussions are presented.  相似文献   

12.
Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate the flow around the hull while considering propeller interaction. In this paper, the viscous flow around modern ship hulls is computed considering propeller action. In this analysis, the numerical investigation of flow around the ship is combined with propeller theory to simulate the hull-propeller interaction. Various longitudinal positions of the rudder are also analyzed to determine the effect of rudder position on propeller efficiency. First, a numerical study was performed around a bare hull using Shipflow computational fluid dynamics(CFD) code to determine free-surface wave elevation and resistance components.A zonal approach was applied to successively incorporate Bpotential flow solver^ in the region outside the boundary layer and wake, Bboundary layer solver^ in the thin boundary layer region near the ship hull, and BNavier-Stokes solver^in the wake region. Propeller open water characteristics were determined using an open-source MATLAB code Open Prop, which is based on the lifting line theory, for the moderately loaded propeller. The obtained open water test results were specified in the flow module of Shipflow for self-propulsion tests. The velocity field behind the ship was recalculated into an effective wake and given to the propeller code that calculates the propeller load. Once the load was known, it was transferred to the Reynolds-averaged Navier-Stokes(RANS) solver to simulate the propeller action. The interaction between the hull and propeller with different rudder positions was then predicted to improve the propulsive efficiency.  相似文献   

13.
带前置导叶桨潜艇自航试验的数值模拟与自航因子预报   总被引:3,自引:1,他引:2  
本文根据RANS代码,采用移动网格滑移交接面技术对假想的带前置导叶潜艇的自航试验、螺旋桨敞水试验进行模拟,并依据试验结果验证之,发现该方法能够较好地预报螺旋桨推力、扭矩.而后,与潜艇阻力试验相结合,预报潜艇自航因子,通过与试验结果的比较分析,验证了方法的可靠性.  相似文献   

14.
Steady flow simulations for the Korean Research Institute for Ships and Ocean Engineering (KRISO) container ship (KCS) were performed for towing and self-propulsion. The main focus in the present article is on the evaluation of computational fluid dynamics (CFD) as a tool for hull form design along with application of state-of-the-art technology in the flow simulations. Two Reynolds-averaged Navier-Stokes (RANS) equation solvers were employed, namely CFDShip-Iowa version 4 and Flowpack version 2004e, for the towing and self-propulsion cases, respectively. The new features of CFDShip-Iowa version 4 include a single-phase level-set method to model the free surface and an overset gridding capability to increase resolution in the flow and wave fields. The new features of Flowpack version 2004e are related to a self-propulsion scheme in which the RANS solver is coupled with a propeller performance program based on the infinitely bladed propeller theory. The present work is based on a close interaction between IIHR-Hydroscience and Engineering of the University of Iowa and Osaka Prefecture University. In the following article, overviews are given of the present numerical methods and results are presented and discussed for the KCS in towing and self-propulsion modes, including comparison with available experimental fluid dynamics (EFD) data. Additional evaluation is provided through discussion of the recent CFD Workshop Tokyo 2005, where both methods appeared to yield very promising results.  相似文献   

15.
本文通过五艘几何相似船模的常规阻力试验、螺旋桨模型敞水试验、自航试验以及其中三艘船模的伴流场测量,分析研究了五艘船模的阻力、螺旋桨敞水性能及自航要素间的尺度效应问题。探讨了自航要素尺度效应的缘由。取得了伴流分布尺度效应较满意的结果。并用各种相关方法同相应的实船试航资料进行相关分析,明确了采用不同相关方法对阻力及各自航要素的影响。  相似文献   

16.
以某四桨水面船舶为研究对象,基于RANS方法和滑移网格技术,建立船、附体和螺旋桨整体计算模型,并运用小范围改变螺旋桨转速的方法和前后桨分别计算的方法预报该船的自航因子。结果表明:四桨船舶内、外桨的自航因子并不相等,内后桨的实效伴流分数和推力减额分数均比外前桨的大;提出的方法计算结果可靠,能够体现四桨船舶自航因子的差异性,并且符合推力减额与伴流关系的一般规律,可为多桨船舶的自航试验提供依据。  相似文献   

17.
基于滑移网格的带桨水面船自航性能预报研究   总被引:1,自引:1,他引:0  
应用FINE/Marine软件对KCS船、KP505桨以及考虑自由液面的船桨组合体进行数值计算,并计算其自航性能。利用滑移网格技术和随体网格来实现船桨之间的相互耦合。考虑到原有的自航性能数据处理方法并不代表实际情况,文中借鉴强制自航法的概念提出了一种新的船舶自航点求解方法预报船舶自航性能,并与模型试验结果进行比较,吻合良好,其中推力减额系数、伴流分数以及船舶推进效率的计算误差分别为0.5%、2.18%、6.76%。本文研究为预报船舶自航性能提供了一种新的研究手段。  相似文献   

18.
翟树成  刘登成  韩用波 《船舶力学》2021,25(10):1292-1301
本文基于非定常粘性RANS方法结合Schnerr-Sauer空泡模型,建立了船后螺旋桨空泡脉动压力数值预报方法,并开展了数值方法的不确定度分析;然后采用ITTC'78自航预报规程结合CFD方法预报了带前置预旋导轮的节能效果,开展了安装节能导轮后的螺旋桨空泡脉动压力预报研究;对比分析了有无节能装置时的螺旋桨叶表面空泡形态及1阶和2阶船体脉动压力.研究表明,在本实例中安装节能装置后的1阶和2阶脉动压力分别下降了33%和20%,而桨叶表面空泡面积也有所下降.  相似文献   

19.
文章以集装箱船模型KCS(KRISO Container Ship)为研究对象,基于通用CFD软件FLUENT 12.0.16,采用螺旋桨体积力模型,实现了模型尺度下实船自航点的全粘带自由面计算。该文的计算包括静水拖航计算、自航计算,以及扭矩对自航计算结果的影响分析。通过与试验值的分析比较,验证了该方法的有效性。由于采用了完全结构化的六面体网格,带对称面的计算域单元数仅为33万。研究结果还表明:考虑扭矩的全流场计算对于改善流动细节,获得更精确的计算结果是有利的,但计算量有所增加。  相似文献   

20.
在单桨船自航性能预报二因次与三因次标准方法与规范的基础上,提出一种耙吸拖力自航试验及实船耙吸拖力预报方法。选取5条不同型号的双桨耙吸挖泥船进行模型试验,分别用二因次与三因次方法对耙吸拖力进行预报。根据预报结果对三因次法中的功率因子与转速因子进行回归分析,比较两种方法的最终预报结果,验证了所提方法的合理性、有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号