首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Currently, the US and Europe are the centers for the design of semi-submersible rigs.The American company FRIEDE & GOLDMAN was founded in the 1950s. At present, over 100 mobile offshore drilling units and production platforms in the world are designed by this company, which mainly has two types of deepwater semi-submersible rig, F&GExD and MillenniumSA. F&GExD is the semi-submersible rig of the sixth generation and its operational depth can reach up to 3050m. MillenniumSA is semi-submersible rig of the fifth and half generation with an operational depth of 2400m.  相似文献   

2.
浮式海上风力机运动性能和锚泊系统(英文)   总被引:2,自引:0,他引:2  
The development of offshore wind farms was originally carried out in shallow water areas with fixed(seabed mounted) structures.However,countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas.The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform.This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine(FOWT) system.The wind turbine was modeled as a wind block with a certain thrust coefficient,and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software.The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined.The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.  相似文献   

3.
At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compared with the full depth system,the working depth and span are smaller in the truncated one,and the other characteristics maintain more consistency as well.In this paper,an inner turret moored floating production storage & offloading system(FPSO) which works at a water depth of 320m,was selected to be a research example while the truncated water depth was 80m.Furthermore,an improved non-dominated sorting genetic algorithm(INSGA-II) was selected to optimally calculate the equivalent water depth truncated system,considering the stress condition of the total mooring system in both the horizontal and vertical directions,as well as the static characteristic similarity of the representative single mooring line.The results of numerical calculations indicate that the mathematical model is feasible,and the optimization method is fast and effective.  相似文献   

4.
系泊系统非线性恢复力研究及其应用(英文)   总被引:2,自引:1,他引:1  
Mooring system plays an important role in station keeping of floating offshore structures.Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years.At present,chains and wire ropes are widely used in offshore engineering practice.On the basis of mooring line statics,an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article,taking into account the horizontal restoring force,vertical restoring force and their coupling terms.The nonlinearity of mooring stiffness was analyzed,and the influences of various parameters,such as material,displacement,pre-tension and water depth,were investigated.Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented.Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system.Also,the stiffness can be used in hydrodynamic analysis to get the eigenfrequency of slow drift motions.  相似文献   

5.
Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse catenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interactional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.  相似文献   

6.
To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.  相似文献   

7.
Transportation of tension leg platform(TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel.The requirements of this type of vessel are always special,and their availability is limited.To prepare for the future development of South China Sea deepwater projects,the China Offshore Oil Engineering Corporation has recently built a heavy lift transport vessel-Hai Yang Shi You 278.This semi-submersible vessel has a displacement capacity of 50k DWT,and a breath of 42 meters.Understanding the vessel’s applicability and preparing it for use in future deepwater projects are becoming imminent needs.This paper reviews the current critical issues associated with TLP transportation and performs detailed analysis of the designed TLP during load-out and transportation.The newly built COOEC transportation vessel HYSY 278 was applied to dry transport of the TLP structure from the COOEC fabrication yard in Qingdao to an oil field in South China Sea.The entire process included the load-out of the TLP structure from the landsite of the fabrication yard,the offloading and float-on of the platform from the vessel,the dry transport of the TLP over a long distance,and the final offloading of the platform.Both hydrodynamic and structure analysis were performed to evaluate the behavior of the transport vessel and TLP structure.Special attention was paid to critical areas associated with the use of this new vessel,along with any potential limitations.The results demonstrate that HYSY 278 can effectively be used for transporting the structure with proper arrangement and well-prepared operation.The procedure and details were presented on the basis of the study results.Special attention was also given to discussion on future use based on the results from the analysis.  相似文献   

8.
This paper studies the current available options forfloating production platforms in developing deepwater oil fieldsand the potential development models of future oil and gasexploration in the South China Sea. A detailed review of currentdeepwater platforms worldwide was performed through theexamples of industry projects, and the pros and cons of eachplatform are discussed. Four types of platforms are currently usedfor the deepwater development: tension leg platform, Spar,semi-submersible platform, and the floating production systemoffloading. Among these, the TLP and Spar can be used for dry treeapplications, and have gained popularity in recent years. The drytree application enables the extension of the drilling application forfixed platforms into floating systems, and greatly reduces the costand complexity of the subsea operation. Newly built wet treesemi-submersible production platforms for ultra deepwater are alsogetting their application, mainly due to the much needed payloadfor deepwater making the conversion of the old drillingsemi-submersible platforms impossible. These platforms have beenused in different fields around the world for different environments;each has its own advantages and disadvantages. There are manychallenges with the successful use of these floating platforms. A lotof lessons have been learned and extensive experience accumulatedthrough the many project applications. Key technologies are beingreviewed for the successful use of floating platforms for fielddevelopment, and potential future development needs are beingdiscussed. Some of the technologies and experience of platformapplications can be well used for the development of the SouthChina Sea oil and gas field.  相似文献   

9.
The South China Sea contains tremendous oil and gas resources in deepwater areas. However, one of the keys for deepwater exploration, the investigation of deepwater floating platforms, is very inadequate. In this paper, the authors studied and compared the hydrodynamics and global motion behaviors of typical deepwater platforms in the South China Sea environment. The hydrodynamic models of three main types of floating platforms, e.g. the Semi-submersible, tension leg platform (TLP), and Truss Spar, which could potentially be utilized in the South China Sea, were established by using the 3-D potential theory. Additionally, some important considerations which significantly influence the hydrodynamics were given. The RAOs in frequency domains as well as global motions in time domains under time-varying wind, random waves, and current in 100-y, 10-y, and 1-y return period environment conditions were predicted, compared, and analyzed. The results indicate that the heave and especially the pitch motion of the TLP are favorable. The heave response of the Truss Spar is perfect and comparable with that of the TLP when the peak period of random waves is low. However, the pitch motion of Truss Spar is extraordinarily larger than that of Semi-submersible and TLP.  相似文献   

10.
Direct time-domain simulation of floating structures has advantages: it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB, and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability, and the method is also accurate and computationally efficient.  相似文献   

11.
This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles. Based on the selected drilling semi-submersible configuration, the mooring systems were analyzed and designed for a range of water depths using different mooring line materials. These were steel wire rope, polyester rope and HMPE (high modulus poly ethylene). The mooring analysis was carried out using the advanced fully coupled time domain analysis method in the computer software package HARP. Diffraction analysis was first applied to solve the hydrodynamic properties of the vessel and then the motion equations of the complete dynamic system including the drilling rig, the mooring lines and risers were developed and solved in the time domain. Applying the advanced analysis method, a matrix of mooring systems was developed for operating in water depths of 1 000 m, 1 500 m, and 2 000 m using various mooring materials. The development of mooring systems was conducted in accordance with the commonly adopted mooring design code, API RP 2SK and API RP 2SM. Fresh attempts were then made to comparatively evaluate the mooring system’s characteristics and global performance. Useful results have been obtained in terms of mooring materials, water depths, and key parameters of mooring configurations. The results provide in-depth insight for the design and operation of deepwater mooring systems in the South China Sea environment.  相似文献   

12.
深水定位系泊系统关键设备的三链轮锚机控制操作研究   总被引:1,自引:0,他引:1  
定位系泊系统作为深水半潜式钻井平台的关键设备之一,已广泛应用于深水平台的作业中。介绍了深水定位系泊系统关键设备——三链轮深水定位锚机的主要组成及功能,尤其对它的操作界面及操作流程等进行了重点说明和研究。  相似文献   

13.
介绍了中海油田服务股份有限公司在中国南海进行的预试井活动,讨论了将用于深水油山钻井作业的人工海底新技术.深水钻井市场在最近10年中处于不断扩张的过程,目前世界上用于深水和超深水钻采作业的钻井船和甲台数目不足.中国目前也需要更多的设备用于深水海洋的钻采作业.中海油田服务股份有限公司目前拥有的一些半潜式钻井平台可以在水深浅于475m的水深中进行作业.自从2004年以来,中海油田服务股份有限公司与挪威公司合作,进行人工海底技术的研究和改进,这种技术发展的目标是,利用较浅水作业的钻井平台,进行水深1 000~1 500 m的油气田的钻井作业.介绍了该种技术研究和改进的过程,相关装备的生产和更新.2008年6月,在中国南海的500m水域应用人工海底技术进行了预试验井的作业.2009年,中海油田服务股份有限公司将在中国南海的同一海域进行另一次更深入的实际钻井作业.  相似文献   

14.
以一座预想在我国南海作业、工作水深3 000 m的深水半潜式钻井平台为例,应用MOSES程序对该平台的运动性能和锚泊定位能力进行了系统的分析.首先建立平台的三维湿表面模型,采用三维绕射辐射理论进行计算,获得了作用在平台湿表面上的波浪载荷和平台响应的传递函数.结合南海海况资料,对平台运动响应进行了短期预报.然后采用时域耦合分析法对该平台锚泊系统的定位能力进行了计算.研究结果对该平台的模型试验具有参考意义.  相似文献   

15.
陈刚  吴晓源 《上海造船》2012,(2):7-11,15
深水半潜式钻井平台在码头舾装的周期较长,为确保安全,需对其码头系泊系统进行计算,以得到合理的系泊布置方式。以某深水半潜式钻井平台的码头系泊系统为例,进行风、流载荷共同作用下的抗台风系泊计算分析,建立了多浮体混合带缆系泊系统。  相似文献   

16.
李东亮 《船舶工程》2013,35(6):102-105
动力定位系统在船舶和海洋工程有着大量的应用,特别是在深水石油开发钻井平台中成为必备的关键设备。海洋钻井平台在钻井作业过程中要求其不受海洋气象环境的影响,保持在一个相对确定的海面位置上。早期浅水浮式钻井平台采用锚定位的方式可以胜任该项作业要求,但随着水深的增加,特别在大于1000米水深时,从技术和经济角度考虑已不能适应实际的需要。本文集中介绍动力定位系统的组成和系统配置,为以后的动力定位系统设计起到一定的借鉴作用。  相似文献   

17.
针对一个工作于墨西哥湾海域1500m水深的半潜式钻井平台,选择polyester PET,polyester PEN和HMPE三种合成纤维材料及不同轴向刚度进行系泊方案设计,考虑系泊线的非线性动态特性和平台与系泊线之间的相互影响,在时域内进行耦合计算分析.并与传统的锚链钢缆组合的悬链线式系泊方式进行比较,发现悬链线方式很难保证平台的活动半径在要求范围之内,而由新型纤维材料组成的张紧式系泊方式则能达到良好的定位效果.经进一步对三种材料系泊系统对平台运动和系泊线受力以及经济性的比较,确定polyester PET最满足此半潜式钻井平台的安全作业要求.  相似文献   

18.
我国海洋油气开发正逐步从近海浅水区域不断往远海深水区域发展。随着水深的增加,传统的以锚链为材料,以自重为回复力的悬链线式系泊系统已经不再适用。世界上超深水浮式生产平台基本上都采用张紧式系泊系统,并且中间段采用超轻的聚酯缆材料以降低其施加在平台上的荷载。基于1500米超深水的中国南海环境,开发了一种运动性能良好的新型干树半潜平台。新型平台的系泊系统采用张紧式锚链-聚酯缆-锚链形式。根据平台尺度和环境条件,对系泊系统进行了布置和设计。通过时域耦合方法对系泊系统进行了数值分析,分析结果表明系泊系统强度满足规范和设计要求。  相似文献   

19.
半潜式平台系泊定位控制系统的研究成为开发深海资源的重要关键技术。针对于此,建立了深水系泊试验控制系统,采用自动定位控制、PLC和变频控制技术,实现对实物和模拟锚机的收放索的控制,以达到模拟平台的位移目标。深水系泊自动定位试验系统的研制,对于我国半潜式平台的发展具有重大战略意义。  相似文献   

20.
通过对“海洋石油982”号(以下简称:HYSY982)动力定位系统和接泊式锚泊系统的介绍,结合平台设计服役海域水深、海况等作业特点,分析讨论HYSY982定位系统在不同水深、环境下的定位作业模式特点,不仅能为平台海上定位操作提供合理的作业指导,而且能为作业者提供更加经济、高效的多种作业模式选择,从而实现同级别第六代深水半潜式平台从浅水到深水全覆盖的优越市场竞争力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号