首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
In this paper a 3D numerical model was developed to study the complicated interaction between waves and a set of tandem fixed cylinders.The fluid was considered to be inviscid and irrotational.Therefore,the Helmholtz equation was used as a governing equation.The boundary element method(BEM) was adopted to discretize the relevant equations.Open boundaries were used in far fields of the study domain.Linear waves were generated and propagated towards tandem fixed cylinders to estimate the forces applied on them.Special attention was paid to consideration of the effect on varying non-dimensional cylinder radius and distance between cylinders,ka and kd on forces and trapped modes.The middle cylinder wave forces and trapped modes in a set of nine tandem cylinders were validated utilizing analytical data.The comparisons confirm the accuracy of the model.The results of the inline wave force estimation on n tandem cylinders show that the critical cylinder in the row is the middle one for odd numbers of cylinders.Furthermore the results show that the critical trapped mode effect occurs for normalized cylinder radiuses close to 0.5 and 1.0.Finally the force estimation for n tandem cylinders confirms that force amplitude of the middle cylinder versus normalized separation distance fluctuates about that of a single cylinder.  相似文献   

2.
Characteristics of a bubble jet near a vertical wall   总被引:1,自引:0,他引:1  
A numerical model of a coupled bubble jet and wall was built on the assumption of potential flow and calculated by the boundary integral method. A three-dimensional computing program was then developed. Starting with the basic phenomenon of the interaction between a bubble and a wall, the dynamics of bubbles near rigid walls were studied systematically with the program. Calculated results agreed well with experimental results. The relationship between the Bjerknes effect of a wall and characteristic parameters was then studied and the calculated results of various cases were compared and discussed with the Blake criterion based on the Kelvin-impulse theory. Our analyses show that the angle of the jet's direction and the pressure on the rigid wall have a close relationship with collapse force and the bubble's characteristic parameters. From this, the application range of Blake criterion can be determined. This paper aims to provide a basis for future research on the dynamics of bubbles near a wall.  相似文献   

3.
Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.  相似文献   

4.
The surface wave generated by flow around a ship hull moving near free surface of water is simulated numerically in this study. The three-dimensional implicit finite volume method(FVM) is applied to solve Reynolds averaged Navier-Stokes(RANS) equation. The realizable k-ε turbulence model has been implemented to capture turbulent flow around the ship hull in the free surface zone. The volume of fluid(VOF) method coupled with the Stokes wave theory has been used to determine the free surface effect of water. By using is a six degrees of freedom model, the ship hull's movement is numerically solved with the Stokes wave together. Under the action of Stokes waves on the sea, the interface between the air and water waves at the same regular pattern and so does the pressure and the vertical velocity. The ship hull moves in the same way as the wave. The amplitude of the ship hull's heave is less than the wave height because of the viscosity damping. This method could provide an important reference for the study of ships' movement, wave and hydrodynamics.  相似文献   

5.
The stress combination method for the fatigue assessment of the hatch corner of a bulk carrier was investigated based on equivalent waves.The principles of the equivalent waves of ship structures were given,including the determination of the dominant load parameter,heading,frequency,and amplitude of the equivalent regular waves.The dominant load parameters of the hatch corner of a bulk carrier were identified by the structural stress response analysis,and then a series of equivalent regular waves were defined based on these parameters.A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis.The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value.The proposed method was applied to the hatch corner of another bulk carrier as an example.This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis.The workload is reduced substantially.This method can be referenced in the fatigue assessment of the hatch corner of a bulk carrier.  相似文献   

6.
The surface wave generated by flow around a ship hull moving near free surface of water is simulated numerically in this study. The three-dimensional implicit finite volume method(FVM) is applied to solve Reynolds averaged Navier-Stokes(RANS) equation. The realizable k-ε turbulence model has been implemented to capture turbulent flow around the ship hull in the free surface zone. The volume of fluid(VOF) method coupled with the Stokes wave theory has been used to determine the free surface effect of water. By using is a six degrees of freedom model, the ship hull’s movement is numerically solved with the Stokes wave together. Under the action of Stokes waves on the sea, the interface between the air and water waves at the same regular pattern and so does the pressure and the vertical velocity. The ship hull moves in the same way as the wave. The amplitude of the ship hull’s heave is less than the wave height because of the viscosity damping. This method could provide an important reference for the study of ships’ movement, wave and hydrodynamics.  相似文献   

7.
To simulate two-dimensional free-surface flows with complex boundaries directly and accurately, a novel VOF (Volume-of-fluid) method based on unstructured quadrilateral mesh is presented. Without introducing any complicated boundary treatment or artificial diffusion, this method treated curved boundaries directly by utilizing the inherent merit of unstructured mesh in fitting curves. The PLIC (Piecewise Linear Interface Calculation) method was adopted to obtain a second-order accurate linearized reconstruction approximation and the MLER (Modified Lagrangian-Eulerian Re-map) method was introduced to advect fluid volumes on unstructured mesh. Moreover, an analytical relation for the interface’s line constant vs. the volume clipped by the interface was developed so as to improve the method’s efficiency. To validate this method, a comprehensive series of large straining advection tests were performed. Numerical results provide convincing evidences for the method’s high volume conservative accuracy and second-order shape error convergence rate. Also, a dramatic improvement on computational accuracy over its unstructured triangular mesh counterpart is checked.  相似文献   

8.
Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.  相似文献   

9.
Based on a volume of fluid two-phase model imbedded in the general computational fluid dynamics code FLUENT6.3.26, the viscous flow with free surface around a model-scaled KRISO container ship (KCS) was first numerically simulated. Then with a rigid-lid-free-surface method, the underwater flow field was computed based on the mixture multiphase model to simulate the bubbly wake around the KCS hull. The realizable k-ε two-equation turbulence model and Reynolds stress model were used to analyze the effects of turbulence model on the ship bubbly wake. The air entrainment model, which is relative to the normal velocity gradient of the free surface, and the solving method were verified by the qualitatively reasonable computed results.  相似文献   

10.
In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numerical algorithm,a numerical study on a regularly and randomly excited container in vertical direction was conducted utilizing four different cases: The first case was performed utilizing a 2D container with regular excitations.The next case examined a regularly excited 3D container with two different initial conditions for the liquid free surface,and finally,3D container with random excitation in the vertical direction.A grid independence study was performed along with a series of validation tests.An iteration error estimation method was used to stop the iterative solver(used for solving the discretized governing equations in the computational domain) upon reaching steady state of results at each time step.In the present case,this method was found to produce quite accurate results and to be more time efficient as compared to other conventional stopping procedures for iterative solvers.The results were validated with benchmark results.The wave elevation time history,phase plane diagram and surface plots represent the wave nonlinearity during its motion.  相似文献   

11.
基于B样条的三维船体水动力数值计算   总被引:1,自引:1,他引:0  
本文采用基于B样条的一种新的数值方法计算三维船体水动力,用B样条函数表达三维船体表面的几何形状以及流场中未知物理量的分布,为了验证该数值方法的可行性和精确度首先对处于无限流体域中的圆球体绕流问题进行了计算;其次计算了由ITTC所推荐的Wigley船型的兴波阻力以及以一攻角斜航时的操纵水动力;最后在一些假设下对两船作平行航行时的干扰水动力作了相应计算工作。数值计算结果与其它试验或理论结果在定量或定性上吻合良好。  相似文献   

12.
Ship structures may be subjected to repeated random patch loads at different locations. Under these circumstances, ship plates will have large accumulated permanent deformations, which will result in some serious negative effects on their work and safety performance. Therefore, the elasto-plastic response of ship structure under repeated patch loads at different locations are studied by using finite element method. The permanent deformations of plate in the whole loading and unloading process are investigated. In addition, the residual stress and plastic strain states of the panel and stiffeners are studied based on a typical wheel-on-deck interaction scenario. Moreover, according to Hughes's hypothesis, the equivalent method between repeated patch loads at different locations and full uniform pressure load is studied. Considered the influence of plate slenderness, the improved formula for equivalent load coefficient is proposed, showing a good correlation with experimental data and numerical results. The proposed equivalent method can be used for estimating the permanent deformations of ship structures under repeated patch loads at different locations in ship life.  相似文献   

13.
The objective of this study was to develop a numerical analysis method based on the moving particle semi-implicit method for simulating shipping water on a moving ship. Towing tests of a very large crude carrier were numerically analyzed for three typical wavelengths. The ship was forced to move in order to express previously measured ship oscillations, and the calculated fluid behavior and the impact pressure on the deck were compared with the experimental results.  相似文献   

14.
When a ship navigates at sea, the slamming impact can generate significant load pulses which move up along the hull plating. The effect of the moving pressure has so far not been explicitly considered in the Rules and Regulations for the Classification of Ships. Based on a modal superposition method and the Lagrange equation, this paper derives analytical solutions to study the elastic dynamic responses of fully clamped rectangular plates under moving pressure impact loads. The spatial variation of the moving slamming impact pressure is simplified to three types of impact loads, i.e. a rectangular pulse, a linearly decaying pulse and an exponentially decaying pulse. The dynamic responses of fully clamped rectangular plates under the moving slamming impact pressure are calculated in order to investigate the influence of the load pulse shapes and moving speed on the plate structural behaviour. It is found that the structural response of the plate increases with the increase of the moving speed. The response of the plate subjected to a moving pressure impact load is smaller than the case when the plate is subjected to a spatially uniform distributed impact load with the same load amplitude and load duration. In order to quantify the effect of the moving speed on the dynamic load, a Dynamic Moving Load Coefficient (DMLC) is introduced as the ratio between the dynamic load factor for the moving impact load and that under the spatially uniform distributed impact load. An expression for DMLC is proposed based on analyses of various scenarios using the developed analytical model. Finally an empirical formula which transforms the moving impact loads to an equivalent static load is proposed.  相似文献   

15.
吴建康  陈波 《中国造船》2003,44(1):17-23
采用波动方程/有限元法求解Green-Naghdi(G-N)方程计算船舶在有限水深区域的兴波和波浪阻力。把行驶船舶对水面的扰动作为移动压力直接加在Green-Naghdi方程里,以描述运动船体和水面的相互作用,并经此来计算不面波动、船底水动压力和波浪阻力。G-N方程比浅水方程增加一个非线性的频散项,以补充有限水深对浅水船波的影响。采用随船运动网格的有限方法,以Series 60 CB=0.6船作为算例给出浅水船波的计算结果,并与浅水方程的结果进行了比较。计算结果表明,当船速小于临界速度时,由于频散的影响,G-N方程级出的船后尾波波高比浅水方程的结果大,同时波浪阻力也比浅水方程的结果有所提高。当船速大于临界速度时,G-N方程的计算结果与浅水方程基本相同,频率散射无明显影响。  相似文献   

16.
依据“智能船舶”的理念,针对船舶动力装置故障诊断系统,提出一种基于C/S和B/S混合架构的船舶动力装置远程故障诊断系统。依据B/S和C/S架构的优势,开发了基于C/S架构的数据管理平台,实现了船、岸间的数据、信息交互;将基于模糊神经网络的专家诊断模型应用于B/S架构的岸基船舶动力装置故障诊断系统的故障诊断判别,并利用BP算法训练实例对该模型进行了精度验证。结果表明,系统稳定可靠,故障诊断准确性高,为“智能船舶”发展提供了一个良好的解决方案。  相似文献   

17.
本文对改进后的Dawson方法作了简单的描述,并且给出了船舶在开阔无限水深的海域、限制航道、凹型海底以及其他水下结构物存在的海域中航行时的计算例子。结果显示了改进后的Dawson方法以及计算程序的有效性,是一种可以用来预报不同工程问题中船舶兴波和船舶水动力的简单而实用的方法。  相似文献   

18.
文章基于浅水波动势流理论和薄船假定,建立了浅水超临界航速舰船水压场理论模型。采用有限差分方法,对不同宽度航道下浅水超临界航速舰船水压场进行了数值计算。分析了航道岸壁、水深佛鲁德数、色散效应对舰船水压场的影响。通过与傅里叶积分变换法以及实验结果进行比对,表明了所建立的舰船水压场理论模型与计算方法吻合得较好。  相似文献   

19.
船桨干扰定常空化性能数值模拟   总被引:1,自引:0,他引:1  
文章采用CFD技术计算了船桨干扰定常空化性能。首先计算了不同空化数下的NACA66(MOD)水翼和DTRC4381螺旋桨的定常空化性能,同时预报了KCS船的伴流场、阻力性能和船体表面压力分布。为了验证计算船后螺旋桨空化流的可行性,文中对KCS船和KP505螺旋桨进行了整体考虑,并计算了不同空化数下的船后螺旋桨的空化覆盖面积。计算表明,文中采用的计算方法合理,计算结果与试验结果吻合。  相似文献   

20.
Recently, the fatigue failure of ship rudders owing to vortex-induced vibration has increased as commercial ships become faster and larger. However, previous methods are inappropriate for fatigue failure prevention owing to the lack of fluid–structure interaction considerations. This study aims to develop a fatigue damage prediction method that can be applied at the design stage to prevent fatigue failure of ship rudders under vortex-induced vibration. The developed prediction method employed the fluid–structure interaction (FSI) method to properly consider the fluid–structure interaction and implemented orthonormal mode shapes to reflect the complex geometry and boundary conditions of the ship rudders. For validation, vortex-induced vibration of the hydrofoil model was obtained using the developed method, and the prediction results matched well with the experimental results. Then, the fatigue damage of the ship rudder model under vortex-induced vibration was predicted using the developed method, and their characteristics are discussed. The stress distribution obtained using the developed method matched well with the geometrical characteristics of the ship rudders. The potential for fatigue failure due to the resonance of vortex-induced vibration was expected by comparing the stress distributions for various flow velocities to the S–N curves provided by the DNV classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号