首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work is motivated by the increasing need for cost-efficient solutions in offshore structural systems for wind energy production and for improvement of their structural performance. The structural behavior and design of high-strength steel welded tubular connections (yield strength higher than 700 MPa) subjected to monotonic and strong cyclic loading is investigated. In the first part of the paper, an experimental investigation is presented on high-strength steel tubular X-joints subjected to monotonic and cyclic loading far beyond the elastic limit of the material, leading to weld fracture. Two grades of weld metal material are employed in the welding process of the specimens. The experimental results indicate that the weld material grade has a significant influence on the deformation capacity of the welded connection under monotonic loading conditions, and its low-cycle fatigue life. The experimental procedure is simulated using advanced finite element models, elucidating several features of joint behavior and complementing the experimental results. Overall, a good agreement is found between numerical simulations and experimental results, in terms of both global response and local strains at the vicinity of the welds. Furthermore, the structural performance of the welded tubular joints under consideration is assessed using available design methodologies in terms of both ultimate strength and low-cycle fatigue resistance, in an attempt to validate an efficient design methodology for low-cycle fatigue. The results from this research effort are aimed at developing the necessary background for the possible use of high-strength steel in tubular steel lattice structures, particularly in offshore platforms for renewable energy production. They can also be used as a basis for the possible amendment of relevant design specifications and recommendations for including special provisions for high-strength steel structural systems.  相似文献   

2.
This paper is written as a result of some years experience with fatigue analysis of offshore jacket structures where the connections are made as tubular joints. The hot spot stresses at the tubular joints in such analysis are normally derived based on parametric equations for stress concentration factors. These stress concentration factors are normally related to the axial force in the brace. It is observed that the hot spot stresses at the crown positions of the tubular joint in some cases are significantly affected by the local loading on the chord and the bending moment in the chord. In order to use the existing formulae in these cases some engineering effort is required to derive correct hot spot stress. This work can be avoided by using the nominal stress in the chord as the basis for calculating the hot spot stress at the crown position instead of using the axial force in the brace as basis for the analysis. This also extends the validity of the equations for stress concentration factors for T- and Y- joints in design standards. The proposed modification makes it also simpler to include the effect of joint flexibility in a proper way. The basis for a proposed revision of the equations for stress concentration factors for these joints is presented in this paper. It is considered that this modification leads to minor changes of the computer code, but that it will save analysis work for engineers and reduce the possibility of calculating incorrect fatigue lives in tubular frame structures.  相似文献   

3.
海洋平台中的焊接管节点的疲劳寿命是由热点应力的大小和分布决定。热点应力的大小决定了管节点在疲劳失效前所能承受的循环荷载的次数,而热点应力的位置则决定了疲劳裂纹的萌生位置和扩展方式。文中采用有限元方法分析了承受轴向拉力作用的X型焊接管节点在焊缝周围的热点应力的分布情况,通过对112个X节点进行的模型分析,研究了节点几何参数对热点应力大小和分布规律的影响。  相似文献   

4.
T-joints are one of the most common welded joints used in the construction of offshore structures, including ships and platforms. In the present study, a sequentially coupled thermo-mechanical finite element model that considers temperature-dependent material properties, high temperature effects and a moving volumetric heat source was used to investigate the effect of welding sequence on the residual stresses and distortions in T-joint welds. The parameters of Goldak's double ellipsoidal heat source model were predicted using a neural network. The numerical models were successfully validated by the experimental tests. The results show that the welding sequences have significant effects on the residual stresses and distortions, both in the magnitude and distribution mode. The optimization of the welding sequences should be investigated numerically or experimentally before the construction welded structure.  相似文献   

5.
偶然荷载引起的撞击会造成海洋平台中的管桁架严重损伤,尤其是管节点的破坏,严重时会导致整个平台的损坏,因此管节点是海洋平台设计研究中的一个重要内容.本文以海洋平台中常见的K型管节点为研究对象,利用有限元软件ABAQUS研究了3个主管在受拉状态下的K型管节点的抗冲击性能.在研究过程中以几何参数和荷载参数为主要变量,分析了各相关参数对管节点的抗冲击性能的影响.确定了K型管节点在冲击荷载作用下的破坏模态.在对冲击力、位移、能量耗散等时程曲线的分析中揭示了抗冲击性能工作机理.研究结果表明:支主管的径厚比以及支管的拉压状态对管节点所受到的最大冲击力和节点变形具有较显著的影响.  相似文献   

6.
This paper examines the dynamic behavior of the tubular K-joints in offshore platforms by means of experimental and numerical studies. The structural response is studied through Falling Weight Impact Tester(FWIT) with three different falling heights. A non-direct similitude method is developed and applied to the scaled K-joint models. The experimental results, including final deformed shapes and impact force responses, are reported to be useful for further benchmark studies. The finite element models are then developed by commercial software LS-DYNA, where nonlinear material properties are considered based on the corresponding tensile tests. Good correspondence between the numerical and experimental results is achieved, and relevant sensitivity analyses of numerical results are carried out to verify the reliability of the numerical models. Finally, the influence of the strain-rate definition and the reliability of the similarity are discussed. In general, the impact response in the present study is significantly dependent on the definition of dynamic material characteristics. The results obtained from Cowper-Symonds model with constants derived from the dynamic tensile test yield a good estimation when compared with the experimental results. Besides, scaled models tend to obtain un-conservative prediction results, and the developed non-direct similitude method is appropriate for the application.  相似文献   

7.
Regarding the research efforts expended so far on the calculation of stress concentration factors (SCFs) in tubular joints, two major shortcomings can be noted: (a) significant effort has been devoted to the study of SCFs in various uni-planar connections. Nevertheless, for multi-planar joints which cover the majority of practical applications, very few investigations have been reported due to the complexity and high cost involved; (b) majority of these research works focused on the study of SCFs at certain positions such as the saddle, crown toe, and crown heel, and they have ignored the hot-spot stress (HSS) at other positions along the weld toe. In the present paper, effects of dimensionless geometrical parameters on the SCF distribution along the weld toe of main (outer) braces in the axially loaded right-angle two-planar tubular DKT-joints are investigated. In order to study the multi-planar effect, SCF distribution in two-planar joints is compared with the distribution in a uni-planar joint having the same geometrical properties. A complete set of SCF database is constructed based on the two-planar DKT-joint Finite element models which are verified against experimental results and the predictions of Lloyd’s Register (LR) equations. The FE models cover a wide range of geometrical parameters. Six new SCF parametric formulae are developed through nonlinear regression analyses for the accurate and reliable fatigue design of two-planar DKT-joints under axial loads. An assessment study of these equations is conducted against the experimental data, the original FEM database and the acceptance criteria recommended by the UK Department of Energy.  相似文献   

8.
Ship collisions with offshore structures may be characterized by large amounts of kinetic energy that can be dissipated as strain energy in either the ship, or the installation, or shared by both. In this paper a series of FE numerical simulations are performed with the aim of providing a clearer understanding on the strain energy dissipation phenomenon, particularly upon the ship-structure interaction. Ships of different dimensions and layouts are modelled for impact simulations. Likewise, three platform jacket models of different sizes and configurations are considered. The collision cases involve joints, legs, and braces and are simulated for several kinetic energy amounts of the vessels and different impact orientations. An overview of the plastic deformation mechanisms that can occur in both ship and jacket structure is also given. The results from the various models with different collision scenarios are compared in terms of the strain energy dissipation with respect to the different ship/installation strength ratios. From the FEA simplified approaches are also derived in terms of the relative stiffness of the two structures for assessing the responses and energy absorptions of the two structures. The conclusions drawn from this study can be applied to a broader range of collision assessment of offshore steel jacket platforms subjected to high-energy ship impacts.  相似文献   

9.
平均应力模型法是评价海洋平台中管节点疲劳寿命的一种方法,这种方法认为节点的疲劳寿命是由热点应力幅值和焊缝周围的应力分布确定的。管节点焊缝周围应力分布通过一个平均应力分布参数AVS描述。本文研究了轴力作用下T节点的AVS大小,通过对127个不同几何参数的T节点模型的计算,调查了几何参数对AVS的影响,提出了用于计算AVS的参数方程,从而完善了传统的平均应力模型,为轴力作用下T节点的疲劳寿命计算提供了一种快速而高效的方法。  相似文献   

10.
The practical use of fracture mechanics has been established for use on large turbine and electric generator rotor components used in the atomic power generation and the aircraft industry. Application areas in the offshore industry have also been identified. Fracture mechanics is currently used at the design stage of offshore facilities. It provides the basis for fatigue life prediction, steel selection and tolerance setting on allowable weld imperfections. Fracture mechanics is also used during the operational stage of a structure to make important decisions on inspection scheduling and repair strategies and as a tool for establishing limits on operational conditions. Linear elastic fracture mechanics relies on the use of the stress intensity factor concept. The stress intensity factor is a very important fracture mechanics parameter. Therefore, the accuracy of any fracture mechanics model for the prediction of fatigue crack growth in offshore structures for example will depend very much on the accuracy of the stress intensity factor solution used. Several empirical and semi-empirical solutions have been developed over the years with varying degrees of accuracy. This paper presents a review of some of these methods and attempts to assess their accuracy in predicting Y factors for welded tubular joints by comparing predicted results with experimental data obtained from fatigue tests conducted on large scale welded tubular joints. The experimental results were conducted under simulated service conditions, using a jack-up offshore standard load history (JOSH). A comparison between the experimental and predicted results shows that there may be other factors, which influence fatigue crack growth under variable amplitude conditions. Some of these factors have been identified and discussed in this paper.  相似文献   

11.
海上平台管节点疲劳性能研究   总被引:4,自引:1,他引:3  
在研究D500系列管节点疲劳特性的基础上,吸取国内外研究成果,建立了适用较广的可靠的管节点疲劳寿命计算方法.文章给出了建立在大量数据基础上的S-N曲线,探讨了影响疲劳寿命的因素,进行了局部应力—应变法及断裂力学法计算分析,对海洋平台管节点提出了适用于工程实际的建议.  相似文献   

12.
应力集中系数作为一个随机变量,对管节点及导管架平台的疲劳可靠性评估结果有着重要影响。文章以多平面DT型管节点为研究对象,建立了352个几何参数不同的三维管节点有限元模型,并分析了沿弦管-撑管焊缝处的应力集中系数分布。采用密度直方图描述最大应力集中系数统计样本的特征,利用疲劳可靠性分析中常用的几种概率分布进行拟合。各个概率模型中的参数通过极大似然估计方法得到。根据卡方检验的结果对比发现,Birnbaum-Saunders分布是最适合的概率模型。因此,文中提出一组适用于描述在轴向载荷即单向轴向和平衡轴向载荷作用下多平面DT型管节点弦管侧和撑管侧最大应力集中系数分布的概率模型,对今后导管架式海洋平台结构的疲劳可靠性分析具有重要意义。  相似文献   

13.
海洋平台中的KK管节点由于长期承受循环载荷而容易在焊缝处产生疲劳表面裂纹.对包含表面裂纹的KK节点的残余寿命的评估依赖于对表面裂纹应力强度因子的准确估算.本文首先提出了KK节点中表面裂纹的有限元网格产生方法,然后采用线弹性断裂力学理论,通过裂纹前缘的位移外推插值法分析了KK节点在轴向力作用下沿着表面裂纹的应力强度因子的分布情况.最后,通过对22个KK节点的模型分析,研究了节点的几何参数和裂纹形状参数对应力强度因子的影响情况.  相似文献   

14.
Fatigue assessment is a critical design aspect for many offshore structures. Soil-foundation interaction has a direct impact on the system dynamic response of these structures. While the stiffness of the soil-foundation interaction influences the system's natural frequency, the damping influences the amplification of the structural response to environmental excitations. This paper presents a simplified model for estimating the soil damping due to nonlinear soil response for pile foundations, which have wide applications in the offshore industry, such as for supporting jacket platforms, wind turbines and wellhead facilities. The proposed model is fundamentally linked to the damping response of the soil measured at element level therefore it offers design engineers an efficient and accurate way to estimate soil-pile interaction damping based on site-specific soil data. Approaches to include the suggested model for structural analysis are also proposed.  相似文献   

15.
With the increasing applications in the offshore industry such as oil and gas jackets, submarine pipelines and wind turbine foundations, concrete-filled double skin steel tubular (CFDST) structures are encountering the ever-increasing risk of threats to underwater explosions (UNDEX). This study presents a systematical investigation on the structural behaviors and design recommendations of the CFDST structures subjected to UNDEX loadings through finite element analysis (FEA) approaches. Finite element models have been developed, where the non-linear material properties of the constitutive steel and concrete parts and the composite actions in-between have been considered. The FEA models are verified against the experimentally determined shock wave pressure history, the deformation shapes, and the residual strength. The full-range analyses were firstly carried out on the structural responses of CFDST structures, including the typical damage patterns and residual strength of the specimen after UNDEX. Then, the parametric studies show that the cross-section hollow ratio, charge weight, and explosion distance play great roles in determining the residual strengths. Thereafter, damage indexes considering the parameter of the hollow ratio and the scaled explosion distance has been formulated, and design recommendations have been suggested accordingly.  相似文献   

16.
海洋平台结构系统疲劳可靠性分析方法   总被引:5,自引:0,他引:5  
本文研究了海洋平台结构系统疲劳可靠性评估方法。文中对平台结构简生管节点疲劳可靠性分析模型进行了简单的评述,在该模型的基础上,建立了用S-N曲线模型与断裂力学模型分别计算平台完好管节点及有初始裂纹管节点疲劳寿命的平告结构系统疲劳可靠性分析模型。作为一个算例,文中运用作者开发的程序系统,对一固定式导管架平台进行了疲劳可靠性计算。  相似文献   

17.
曲慧  褚飞 《船舶力学》2011,15(11):1306-1314
突发事件引起的碰撞会造成海洋平台管桁架结构严重损伤,特别是管节点的破坏,严重时将导致平台报废。文中根据工程中常用的管节点参数确定典型分析节点,采用非线性有限元分析方法,分析主管受到碰撞的管桁架T型节点的变形发展过程,确定节点的破坏模态;在对冲击力、位移、应变和落锤速度等时程曲线的分析中,揭示抗冲击工作机理。分析结果表明:节点变形以受撞区域的主管上表面发生局部屈曲为主,节点的整体变形相对较小,并在主管上表面形成"8"字型塑性铰线。  相似文献   

18.
《Marine Structures》2004,17(6):455-474
The paper focuses on the influence of external hydrostatic pressure on the ultimate capacity of uniplanar X and T welded tubular connections under axial and bending loads. Nonlinear finite element tools, calibrated through available experimental data, are employed to simulate the tubular joints. The numerical results are presented in the form of load-displacement (or moment-rotation) equilibrium paths for different pressure levels, as well as in the form of pressure-load interaction diagrams. It is shown that external pressure causes structural instability, and has significant effects on both the ultimate load and the deformation capacity of the joint. The effects of external pressure on an X joint under balanced axial load are demonstrated and explained qualitatively using a simplified elastic–plastic mechanical model, which describes joint behavior through closed-form expressions.  相似文献   

19.
李志富  任慧龙  李辉 《船舶力学》2016,20(5):591-599
极限海浪可能对海洋平台的安全造成极大的威胁,故合理地评估平台在此海况下的运动响应和系泊缆索的动张力响应对平台设计具有重要意义。文章首先利用新波理论和随机海浪理论建立了畸形波入射波模型。然后利用间接时域方法和非线性有限元法分别建立了平台主体运动和系泊缆索动力响应的求解方程,并根据导缆孔的平衡方程建立了平台主体和系泊缆索的时域耦合运动方程。最后深入分析了某半潜平台在畸形波作用下的运动响应和系泊缆索的动张力响应,对平台的极限生存能力进行了评估。  相似文献   

20.
The detection of changes in the dynamic behavior of structures is an important issue in structural safety assessment. The development of detection methods assumes greater significance in the case of offshore platforms because the inherent problems are compounded by the harsh environment. Here, we describe an instrumented physical model for the structural health monitoring of an offshore jacket-type structure and the results of tests in several different damage scenarios. In a comparative investigation of two different methods, we discuss the difficulties of implementing damage detection techniques for complex structures, such as offshore platforms. The combined algorithm of a fuzzy logic system and a model updating method are briefly discussed, and a method based on stochastic autoregressive moving average with exogenous input is adopted for the structure. The consideration of uncertainties and the effects of nonlinearity were major objectives. So, the methods were also investigated based on the test scenarios consisting of the physical model with a geometric nonlinearity. The principal component analysis method was utilized for the detection of nonlinearity in the recorded data. The results show that the developed methods are suitable for damage classification, but the quality of the acquired signals must be considered an important factor influencing successful classification. The development of these methods may be extremely useful, as such technologies could be applied for offshore platforms in service, enabling damage detection with fewer false alarms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号