首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
粉煤灰地层具有自稳能力差、结构松散、吸水性强、不均匀等特点,因此在该地层修建大断面隧道施工难度极大.本文以盐坪坝隧道为依托,利用Rhinoceros建模并将模型导入FLAC3D计算,对大断面连拱隧道穿粉煤灰地层掌子面附近围岩变形规律进行研究.研究结果表明:中导洞-左右侧壁预留核心土法和中导洞-左右侧壁台阶法开挖时,竖向位移普遍大于水平位移,水平最大位移出现在右洞拱脚约9 mm处,竖向最大位移出现在右洞拱肩约24 mm处,左洞先开挖产生的偏压作用导致右洞围岩位移明显增大,其中中导洞-左右侧壁台阶法在施作二次衬砌后围岩变形速率更大,因此选择中导洞-左右侧壁预留核心土法更有利于围岩稳定.  相似文献   

2.
文章以兰渝铁路胡家湾隧道进口和东扎沟隧道进口施工为例,阐述在如泥岩、页岩等软岩地层洞室开挖时出现的围岩变形特点;从地质、施工等方面分析其变形原因;并从施工时机、施工方法等施工角度分析,制定控制变形的应对措施。以期在类似地层洞室施工时,在控制围岩变形中起到一定的指导、借鉴作用,并确保工程质量及安全。  相似文献   

3.
盾构隧道周围地层变形解析法的运用   总被引:2,自引:1,他引:2  
虽然经验法和有限元法在计算盾构隧道周围引起的地层变形上被广泛运用,但由于它们有诸多缺陷,因此在工程实际中解析法的引入也十分必要.文章通过解析方法对盾构周围地层变形进行了分析,并得出一些结论.实例分析表明,运用这些方法获得的预测结果与观测值能够很好地吻合.  相似文献   

4.
文章针对在建木寨岭隧道7号斜井发生的大变形情况,对施工控制及变形进行了分类,探讨了大变形的影响因素.分析结果表明,高地应力、地层岩性是变形的主要因素,地质构造是变形的次要因素:通过完善施工工艺和提高支护刚度可以有效地抑制变形的发展,保证斜井安全施工,同时可为正洞施工提供依据.  相似文献   

5.
小间距隧道施工引起的地层变形与两隧道间净距有很大关系,净距很小时,不能简单看作两个独立隧道施工引起地层变形的叠加.基于厦门机场路隧道小间距段为工程背景,采用有限差分程序(FLAC30)模拟分析了隧道间净距对地层变形和支护结构受力的影响,并通过实测数据分析了隧道开挖引起地层变形的横向影响范围,对工程的后续施工提供了指导,为大跨度小间距隧道的开发和施工设计提供了较确切的参考数据和理论依据.  相似文献   

6.
大直径盾构隧道掘进施工对土体造成扰动,导致地表产生沉降或隆起,继而严重威胁上部建筑物群的结构安全。文章依托某大直径盾构隧道穿越老旧小区密集建筑物群工程,首先利用二维有限元软件计算关键断面房屋的沉降变形,再对比三维有限元软件的计算结果,分析两种计算方法的适用范围;然后基于三维模型探究了不同初期荷载释放率对盾构穿越引起的地表和房屋变形的影响,最后利用Peck公式计算的理论地表沉降数据,梳理初期荷载释放率、地表沉降、地层损失率三者的内部联系并提出了控制变形的相关措施。研究结果表明,初期荷载释放率越小,地表及房屋沉降也越小,对应的地层损失也越小;对于控制地表变形,减小荷载释放率等同于减小地层损失率;初期荷载释放率、地表沉降、地层损失率这三者减小的量值呈线性关系。  相似文献   

7.
大断面黄土隧道变形规律及预留变形量研究   总被引:1,自引:0,他引:1  
文章统计分析了大断面黄土隧道初期支护变形量,研究了大断面黄土隧道变形规律及预留变形量合理取值范围.大断面黄土隧道变形规律表现为:隧道拱顶、拱脚下沉差异小,隧道开挖后拱部将产生一定程度的整体下沉;隧道拱顶下沉量均大于水平收敛;初期支护封闭后,隧道周边位移基本上不再发展;当隧道埋深小于40m时,隧道变形量较大且规律不明显;当隧道埋深大于40 m时,隧道变形量分布相对集中.经过对现场量测数据的统计分析可知:在Ⅳ级围岩条件下,大断面黄土隧道预留变形量可取10~15 cm;在Ⅴ级围岩条件下,大断面黄土隧道预留变形量可取25~28 cm.  相似文献   

8.
地铁盾构隧道,尤其是大型跨江海的水下地铁盾构隧道,局部埋深通常要大于普通地铁盾构隧道,而且要承受较高的水压力作用;盾构隧道作为特长线性结构,其纵向刚度较小,对于外部荷载的变化较为敏感,由此产生的不均匀变形是隧道工程中不可忽视的问题。文章针对武汉地铁越长江盾构隧道工程,通过三维数值计算探讨了埋深变化、水压变化、地层变化及穿越刚性结构物等因素对越江盾构隧道纵向不均匀变形及受力状态的影响。  相似文献   

9.
我国目前对隧道-滑坡工程的设计尚无可供参照的行业标准,尤其是滑坡洞口段隧道缺少相应的计算理论。文章首先以平行体系中隧道-洞口滑坡为研究对象,通过归纳总结滑坡地段隧道衬砌的病害特征,构建了相应的工程地质模型;然后将剩余滑坡推力视为导致隧道变形破坏的直接原因,通过荷载传递规律得到作用于隧道结构上的附加荷载,将其与围岩压力叠加推导出了隧道外荷载的计算公式;接着采用弹性地基梁理论,推导出滑坡推力作用下的隧道内力计算方法,从而得到隧道-洞口滑坡的受力变形模式及计算理论;最后通过模型试验对其合理性进行了验证分析,结果表明该方法与实际工程相符,能够为滑坡地段洞口隧道的设计提供参考。  相似文献   

10.
在深埋云母片岩地层中,隧道的锚杆支护结构常发生失效,进而引发围岩大变形问题,威胁隧道施工安全和结构的可靠度。文章采用现场试验及数值计算相结合的手段,分析了云母片岩地层隧道围岩的应力应变特征和松动圈形态,研究了片岩地层中锚-岩复合体的应力关系和失效特征,可为云母片岩及层状各向异性岩体地层隧道支护方案设计、围岩变形控制及减灾避灾提供参考。  相似文献   

11.
文章基于力学原理,对沥青混合料永久变形的各种试验方法的优缺点进行了比较,得出三轴重复荷载蠕变试验是评估沥青混合料永久变形的首选方案,其不仅能模拟道路的实际受力状态,而且能准确的进行车辙的计算和预估,值得推广应用。  相似文献   

12.
近年来,穿越高地应力区且工程地质环境恶劣的软弱围岩长大隧道工程不断涌现,其不同程度围岩大变形问题给施工设计造成了很大困难。从研究软弱围岩隧道大变形分类、挤压变形分级出发,利用现场试验对隧道岩体强度进行估算,并采用Hoek方法对挤压变形进行判定及量值估算,其研究成果应用于正在修建的兰渝线木寨岭隧道斜井工程中加以验正,结果与现场实测数据规律基本一致。  相似文献   

13.
文中以实际工程中Φ406.4×7.9 mm无缝钢制弯管发生屈曲为例,采用有限元方法对该弯管的屈曲失稳形式进行研究,分析不同载荷下弯管的变形行为,研究得到导致弯管发生屈曲变形的主要机理:案例弯管屈曲变形是外部载荷挤压地下软基而引起管道局部偏移,偏移过程中弯管局部变形集中,最终弯管屈曲发生.  相似文献   

14.
模型预测法是目前常用的隧道围岩变形预测的方法之一。文章结合广梧高速公路茶林顶隧道工程实例,建立GM(1,1)灰色模型、GM(2,1)灰色模型和双曲函数回归模型分别对隧道围岩变形进行预测,并对各模型的预测情况进行对比分析。结果表明,不论是从短期还是从长期看,GM(1,1)灰色模型都体现了优越的模拟和预测效果,且建立预测模型时不需要大量的统计数据,可应用于工程实际。  相似文献   

15.
基于PIC单片机,设计了海底管道内变形检测仪。通过单片机来控制位移传感器检测管道是否变形,然后将形变量存储到大容量Flash存储器中。通过串口将存储器中的数据传送到上位机,将数据以曲线的形式形象地显示出来,以便操作人员及时发现管道是否变形。  相似文献   

16.
隧道变形监测对于隧道的安全有着重要的作用.运用灰色理论GM模型对其变形数据进行预测分析,发现灰色理论对隧道的变形有一定的预测效果,同时了解到不同样本数据其预测精度存在差异.为此,提出使用二次拟合参数法对其进行改进,得出二次拟合参数法对低精度的预测模型有一定的改进效果,而对于较高精度的预测模型效果并不显著.  相似文献   

17.
文章结合厦蓉高速贵州境巫帮隧道现场工程地质和隧道开挖情况,制定了详细的隧道围岩监测方案,确定了班场量测的内容、项目与方法,提出了围岩稳定判别标准。并通过对隧道典型断面的拱顶下沉量、周边位移收敛量及地表沉降位移的监测数据的分析.阐述了闭岩变形发展变化规律和产生的原因。  相似文献   

18.
兰渝铁路哈达铺隧道穿越炭质板岩和碳质叶岩(局部还有千枚岩)地层,且岩层走向基本与隧道轴线平行,存在较大的水平应力,施工中出现了较大的收敛变形。文章介绍了哈达铺隧道直立板岩段的大变形情况,从水平应力、地下水、地应力、隧道断面形式等方面分析变形的原因,提出了采用大刚度支护、二次衬砌紧跟、监控量测等控制措施。  相似文献   

19.
兰渝铁路木寨岭隧道是在高地应力、碳质板岩等软弱围岩的复杂地质条件下修建的隧道,在碳质板岩段出现了明显的大变形和局部破坏。针对木寨岭隧道的大变形,文章分析了碳质板岩大变形发生的影响因素,探究了碳质板岩的塑变、板梁弯曲、剪切滑移、压杆破坏等大变形机理,提出了调整隧道围岩受力、加强支护、超前控制等施工措施。  相似文献   

20.
文章以玉山县高竹山隧道的围岩节理特征为基础,采用离散元软件UDEC建立二维计算模型,通过计算不同工况下的拱顶塌落高度值,研究了两组节理耦合工况下节理倾角、间距对隧道变形的影响。研究结果表明,随节理倾角的增大,塌落高度先增大(0°~30°时)后减小(30°~45°时)最后再增大(45°~90°时),且节理倾角为60°时塌落高度计算值与普氏理论值最为接近;当节理间距在0.2~1.0 m范围内时,随节理间距的增大塌落高度呈非线性减小;当间距接近1.0 m时,塌落高度降幅不明显;当间距不大于0.2 m时,计算值与普氏理论值最为接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号