首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short period traffic counts (SPTCs) are conducted routinely to estimate the annual average daily traffic (AADT) at a particular site. This paper uses Indian traffic volume data to methodically and extensively study the effect of four aspects related to the design of SPTCs. These four aspects are: (i) for how long, (ii) on which days should SPTCs be carried out, (iii) how many times, and (iv) on which months should SPTCs be carried out? The analyses indicate that the best durations for conducting SPTCs are 3 days (starting with a Thursday) and 7 days, for total traffic and truck traffic, respectively. Further, these counts should be repeated twice a year keeping a separation of two months between the counts to obtain good estimates of AADT at minimal cost. An additional outcome of this study has been the determination of seasonal factor values for roads in developing economies, like India.  相似文献   

2.
The problem of estimating intersection O-D matrices from input and output time-series of traffic counts is considered in this paper. Because of possible existence of significant correlation between the error terms across structural equations forming the O-D matrices, the seemingly unrelated estimator (Zellner estimator) was suggested. Estimation results showed evidence of strong correlation between error terms across-equations. Generally, the Zellner estimator produced more efficient estimates than did the ordinary least-squares estimator. Furthermore, the Zellner estimator satisfied all constraints and reproduced turning movements comparable to the actual ones.  相似文献   

3.
Many problems in transport planning and management tasks require an origindestination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or roadside interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the use of low cost and easily available data is particularly attractive.The need of low-cost methods to estimate current and future O-D matrices is even more valuable in developing countries because of the rapid changes in population, economic activity and land use. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of this is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods.The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Three types of demand models have been used: gravity (GR), opportunity (OP) and gravity-opportunity (GO) models. Three estimation methods have been developed to calibrate these models from traffic counts, namely: non-linear-least-squares (NLLS), weighted-non-linear-least-squares (WNLLS) and maximumlikelihood (ML).The 1978 Ripon (urban vehicle movement) survey was used to test these methods. They were found to perform satisfactorily since each calibrated model reproduced the observed O-D matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and the stochastic method due to Burrell, in determining the routes taken through the network.requests for offprints  相似文献   

4.
Partly because of counting errors and partly because counts may be carried out on different days, traffic counts on links of a network are unlikely to satisfy the flow conservation constraint “flow IN = flow out” at every node of the network. Van Zuylen and Willumsen (1980) have described a method of eliminating inconsistencies in traffic counts when a single count is available for each link in the network. In this paper, the method is extended to the case when more than one count is available on some links of the network. In addition, an algorithm is described for application of the method.  相似文献   

5.
For a large number of applications conventional methods for estimating an origin destination matrix become too expensive to use. Two models, based on information minimisation and entropy maximisation principles, have been developed by the authors to estimate an O-D matrix from traffic counts. The models assume knowledge of the paths followed by the vehicles over the network. The models then use the traffic counts to estimate the most likely O-D matrix consistent with the link volumes available and any prior information about the trip matrix. Both models can be used to update and improve a previous O-D matrix. An algorithm to find a solution to the model is then described. The models have been tested with artificial data and performed reasonably well. Further research is being carried out to validate the models with real data.  相似文献   

6.
Abstract

The estimation of annual average daily traffic (AADT) is an important parameter collected and maintained by all US departments of transportation. There have been many past research studies that have focused on ways to improve the estimation of AADT. This paper builds upon previous research and compares eight methods, both traditional and cluster-based methodologies, for aggregating monthly adjustment factors for heavy-duty vehicles (US Department of Transportation Federal Highway Administration (FHWA) vehicle classes 4–13). In addition to the direct comparison between the methodologies, the results from the analysis of variance show at the 95% confidence level that the four cluster-based methods produce statistically lower variance and coefficient of variation over the more traditional approaches. In addition to these findings – which are consistent with previous total volume studies – further analysis is performed to compare total heavy-duty monthly adjustment factors, both directions of traffic, with direction-based monthly adjustment factors. The final results show that the variance as well as the coefficient of variation improve on average by 25% when directional aggregate monthly adjustment factors are used instead of total direction.  相似文献   

7.
Conventional methods for estimating origin-destination (O-D) trip matrices from link traffic counts assume that route choice proportions are given constants. In a network with realistic congestion levels, this assumption does not hold. This paper shows how existing methods such as the generalized least squares technique can be integrated with an equilibrium traffic assignment in the form of a convex bilevel optimization problem. The presence of measurement errors and time variations in the observed link flows are explicitly considered. The feasibility of the model is always guaranteed without a requirement for estimating consistent link flows from counts. A solution algorithm is provided and numerical simulation experiments are implemented in investigating the model's properties. Some related problems concerning O-D matrix estimation are also discussed.  相似文献   

8.
Simplified transport models based on traffic counts   总被引:4,自引:0,他引:4  
Having accepted the need for the development of simpler and less cumbersome transport demand models, the paper concentrates on one possible line for simplification: estimation of trip matrices from link volume counts. Traffic counts are particularly attractive as a data basis for modelling because of their availability, low cost and nondisruptive character. It is first established that in normal conditions it may be possible to find more than one trip matrix which, when loaded onto a network, reproduces the observed link volumes. The paper then identifies three approaches to reduce this underspecification problem and produce a unique trip matrix consistent with the counts. The first approach consists of assuming that trip-making behaviour can be explained by a gravity model whose parameters can be calibrated from the traffic counts. Several forms of this gravity model have been put forward and they are discussed in Section 3. The second approach uses mathematical programming techniques associated to equilibrium assignment problems to estimate a trip matrix in congested areas. This method can also be supplemented by a special distribution model developed for small areas. The third approach relies on entropy and information theory considerations to estimate the most likely trip matrix consistent with the observed flows. A particular feature of this group is that they can include prior, perhaps outdated, information about the matrix.These three approaches are then compared and their likely areas for application identified. Problems for further research are discussed and finally an assessment is made of the possible role of these models vis-a-vis recent developments in transport planning.  相似文献   

9.
The average annual daily traffic (AADT) volumes can be estimated by using a short period count of less than twenty‐four hour duration. In this paper, the neural network method is adopted for the estimation of AADT from short period counts and for the determination of the most appropriate length of counts. A case study is carried out by analysing data at thirteen locations on trunk roads and primary roads in urban area of Hong Kong. The estimation accuracy is also compared with the one obtained by regression analysis approach. The results show that the neural network approach consistently performed better than the regression analysis approach.  相似文献   

10.
This paper presents an in-depth study of the methodology for estimating or updating origin-to-destination trip matrices from traffic counts. Following an analysis of the statistical foundation of the estimation and updating problems, various basic approaches are reviewed using a generic traffic assignment map. Computational issues related to specific assignment maps and estimation models for both road and transit networks are then discussed. Finally, additional insight into the relative performance of several estimators is provided by a set of test problems with varying input data.  相似文献   

11.
This paper proposes a new model to estimate the mean and covariance of stochastic multi-class (multiple vehicle classes) origin–destination (OD) demands from hourly classified traffic counts throughout the whole year. It is usually assumed in the conventional OD demand estimation models that the OD demand by vehicle class is deterministic. Little attention is given on the estimation of the statistical properties of stochastic OD demands as well as their covariance between different vehicle classes. Also, the interactions between different vehicle classes in OD demand are ignored such as the change of modes between private car and taxi during a particular hourly period over the year. To fill these two gaps, the mean and covariance matrix of stochastic multi-class OD demands for the same hourly period over the year are simultaneously estimated by a modified lasso (least absolute shrinkage and selection operator) method. The estimated covariance matrix of stochastic multi-class OD demands can be used to capture the statistical dependency of traffic demands between different vehicle classes. In this paper, the proposed model is formulated as a non-linear constrained optimization problem. An exterior penalty algorithm is adapted to solve the proposed model. Numerical examples are presented to illustrate the applications of the proposed model together with some insightful findings on the importance of covariance of OD demand between difference vehicle classes.  相似文献   

12.
Carbon emissions from road transport are one of the main issues related to modern transport planning. To address them adequately, the acquisition of reliable data about traffic flow is an essential prerequisite. However, the large quantity and the heterogeneity of available information often cause problems; missing or incomplete data are one of the most critical aspects. This paper discusses how technology handles imperfect information in order to obtain more accurate quantification of CO2 emissions. First, an analysis of single estimators and combination models is provided, highlighting their main characteristics. Then, the TANINO model (Tool for the Analysis of Non-conservative Carbon Emissions In TraNspOrt) is presented, jointly developed at the University of Seville and at the IUAV University of Venice. It consists of two different modules: the first is a combination model that optimizes the results of three traffic flow single estimators, while the second is a macro-model of carbon evaluation, which takes into account road infrastructure, vehicle type and traffic conditions. TANINO is then tested to calculate CO2 emissions along the ring road of the Spanish city of Seville, showing its more efficient performance, compared to the single estimators normally adopted for such aims. Transport planning can benefit from the adequate knowledge of traffic flows and related CO2 emissions, since it allows a more reliable monitoring of the progresses granted by specific carbon policies.  相似文献   

13.
The road transport sector is one of the major contributors of greenhouse gases and other air pollutants emissions. Regional emissions levels from road vehicles were investigated, in Mauritius, by applying a fuel-based approach. We estimated fuel consumption and air emissions based on traffic counts on the various types of classified roads at three different regional set ups, namely urban, semi urban and rural. The Relative Development Index (RDI), a composite index calculated from socio-economic and environmental indicators was used to classify regions. Our results show that the urban motorways were the most polluting due to heavy traffic. Some rural areas had important pollution levels as well. Our analysis of variance (ANOVA), however, showed little difference in emissions among road types and regions. The study can provide a simple tool for researchers in countries where data are very scarce, as is the case for many developing countries.  相似文献   

14.
This paper generalizes and extends classical traffic assignment models to characterize the statistical features of Origin-Destination (O-D) demands, link/path flow and link/path costs, all of which vary from day to day. The generalized statistical traffic assignment (GESTA) model has a clear multi-level variance structure. Flow variance is analytically decomposed into three sources, O-D demands, route choices and measurement errors. Consequently, optimal decisions on roadway design, maintenance, operations and planning can be made using estimated probability distributions of link/path flow and system performance. The statistical equilibrium in GESTA is mathematically defined. Its multi-level statistical structure well fits large-scale data mining techniques. The embedded route choice model is consistent with the settings of O-D demands considering link costs that vary from day to day. We propose a Method of Successive Averages (MSA) based solution algorithm to solve for GESTA. Its convergence and computational complexity are analyzed. Three example networks including a large-scale network are solved to provide insights for decision making and to demonstrate computational efficiency.  相似文献   

15.
The assessment of uninterrupted traffic flow is traditionally based on empirical methods. We develop some analytic queueing models based on traffic counts and we model the behavior of traffic flows as a function of some of the most relevant determinants. These analytic models allow for parameterized experiments, which pave the way towards our research objectives: assessing what-if scenario’s and sensitivity analysis for traffic management, congestion control, traffic design and the environmental impact of road traffic (e.g. emission models). The impact of some crucial modeling parameters is studied in detail and links with the broader research objectives are given. We illustrate our results for a highway, based on counted traffic flows in Flanders.  相似文献   

16.
The ability to timely and accurately forecast the evolution of traffic is very important in traffic management and control applications. This paper proposes a non-parametric and data-driven methodology for short-term traffic forecasting based on identifying similar traffic patterns using an enhanced K-nearest neighbor (K-NN) algorithm. Weighted Euclidean distance, which gives more weight to recent measurements, is used as a similarity measure for K-NN. Moreover, winsorization of the neighbors is implemented to dampen the effects of dominant candidates, and rank exponent is used to aggregate the candidate values. Robustness of the proposed method is demonstrated by implementing it on large datasets collected from different regions and by comparing it with advanced time series models, such as SARIMA and adaptive Kalman Filter models proposed by others. It is demonstrated that the proposed method reduces the mean absolute percent error by more than 25%. In addition, the effectiveness of the proposed enhanced K-NN algorithm is evaluated for multiple forecast steps and also its performance is tested under data with missing values. This research provides strong evidence suggesting that the proposed non-parametric and data-driven approach for short-term traffic forecasting provides promising results. Given the simplicity, accuracy, and robustness of the proposed approach, it can be easily incorporated with real-time traffic control for proactive freeway traffic management.  相似文献   

17.
《Transportation Research》1978,12(6):395-402
Estimation of traffic velocity and the number of vehicles on adjacent sections of a limited access highway is examined. The method evaluated is based upon application of Kalman Filtering Methods to a linear state variable model of traffic flow. The estimator utilizes velocity and flow measurements at selected points along the highway. The flow measurement is a nonlinear function of the state variables and necessitates linearization about the one step ahead prediction of the state (extended Kalman Filter) or about nominal values of the state variables. It is shown that performance using Lincoln Tunnel data is comparable in either case to that of methods previously reported and provides a substantial savings in storage requirements. Also demonstrated is the fact that flow at an internal measurement point may be deleted from the observation vector without a serious effect on performance. This would arise, for example, if control of traffic were to be exercised at such a point.  相似文献   

18.
19.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   

20.
Recent advances in communication and computing technology have made travel time measurements more available than ever before. In urban signalized arterials, travel times are strongly influenced by traffic signals. This study presents a novel method based on well‐known principles to estimate traffic signal performance (or more precisely their major “through” movements) based on travel time measurements. The travel times were collected between signals in the field by using point‐to‐point travel time measurement technologies. Closed‐circuit television cameras and signal databases were used to collect traffic demand and signal timings, respectively. Then, the volume/capacity ratio of major downstream signal movements was computed based on demand and signal timings. This volume/capacity ratio was then correlated with travel times on the relevant intersection approach. The best volume‐delay function was found, along with many other functions, to fit the field data. This volume‐delay function was then used to estimate volume/capacity ratios and, indirectly, a few other signal performance metrics. The method, called travel time‐based signal performance measurements, was automated and displayed on a Google Map. The findings show that the proposed method is accurate and robust enough to provide necessary information about signal performance. A newly developed volume‐delay function was found to work just slightly better than the Bureau of Public Roads curve. Several issues, which may reduce the accuracy of the proposed method, are identified, and their solutions are proposed for future research. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号