首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forecasts of passenger demand are an important parameter for aviation planners. Air transport demand models typically assume a perfectly reversible impact of the demand drivers. However, there are reasons to believe that the impacts of some of the demand drivers such as fuel price or income on air transport demand may not be perfectly reversible. Two types of imperfect reversibility, namely asymmetry and hysteresis, are possible. Asymmetry refers to the differences in the demand impacts of a rising price or income from that of a falling price or income. Hysteresis refers to the dependence of the impacts of changing price or income on previous history, especially on previous maximum price or income. We use US time series data and decompose each of fuel price and income into three component series to develop an econometric model for air transport demand that is capable of capturing the potential imperfectly reversible relationships and test for the presence or absence of reversibility. We find statistical evidence of asymmetry and hysteresis – for both, prices and income – in air transport demand. Implications for policy and practice are then discussed.  相似文献   

2.
This paper examines the effect of income on car ownership, and specifically the question of hysteresis or asymmetry. Although there is little doubt that rising income leads to higher car ownership, less is understood about the effect of falling income. Traditional demand modelling is based on the implicit assumption that demand responds symmetrically to rising and falling income. The object of this study is to test this assumption statistically. Using a dynamic econometric model relating household car ownership to income, the number of adults and children in the household, car prices and lagged car ownership, income decomposition techniques are employed to separately estimate elasticities with respect to rising and falling income. The equality of these elasticities – no hysteresis – is tested statistically against the inequality – hysteresis – hypothesis. Various functional specifications are tested in order to assure the robustness of the results to assumptions concerning functional form. The estimation is based on cohort data constructed from 1970 to 1995 UK Family Expenditure Surveys, and a pseudo-panel methodology is employed. The results indicate that car ownership responds more strongly to rising than to falling income – there is a ‘stickiness’ in the downward direction. In addition, there is evidence that the income elasticity is not constant, but instead declines with increasing car ownership.  相似文献   

3.
There are recent evidence that air transport demand may not have a perfectly reversible relationship with income and jet fuel prices, as is assumed in most demand models. However, it is not known if the imperfectly reversible effects of jet fuel price are a result of asymmetries in the supply side, i.e., asymmetries in cost pass through from fuel prices to air fare, or of demand side behavioral asymmetries whereby people value gains and losses differently. This paper uses US time series data and decomposes air fare and fuel price into three component series to develop an econometric model of air transport demand that is capable of capturing the potential imperfectly reversible relationships and test for the presence or absence of reversibility. We find that air transport demand shows asymmetry with respect to air fare, indicating potential imperfect reversibility in consumer behavior. We also find evidence of asymmetry and hysteresis in cost pass-through from jet fuel prices to air fare, showing rapid increases in airfare when fuel prices increases but a slower response in the opposite direction.  相似文献   

4.
This paper presents a self-learning Support Vector Regression (SVR) approach to investigate the asymmetric characteristic in car-following and its impacts on traffic flow evolution. At the microscopic level, we find that the intensity difference between acceleration and deceleration will lead to a ‘neutral line’, which separates the speed-space diagram into acceleration and deceleration dominant areas. This property is then used to discuss the characteristics and magnitudes of microscopic hysteresis in stop-and-go traffic. At the macroscopic level, according to the distribution of neutral lines for heterogeneous drivers, different congestion propagation patterns are reproduced and found to be consistent with Newell’s car following theory. The connection between the asymmetric driving behavior and macroscopic hysteresis in the flow-density diagram is also analyzed and their magnitudes are shown to be positively related.  相似文献   

5.
This paper presents new insights on the hysteresis phenomenon in congested freeway traffic. It is found that existing theories based on different driver behavior for acceleration and deceleration are incomplete. The data suggests that one needs to consider aggressive and timid driver behavior as well. These findings are based on an improved method for measuring traffic flow variables from trajectory data consistently with kinematic wave theory.  相似文献   

6.
This study presents a means of determining a historic (generalised cost based) price index for cycling in the UK for the period 1949–2006 using annual demand data. By specifying demand as a function of generalised price and income and then applying a structural time-series model to elucidate the unobserved component of prices (while controlling for observed income levels), it is illustrated that the role of prices in influencing demand is non-trivial. Over the sample period price responses generally influence demand for cycling to a greater extent than income effects.  相似文献   

7.
Promoting public transit is a well-recognized policy for sustainable urban transport development. Transit demand analysis proves to be a challenging task in fast growing cities, partially due to the lack of reliable data and applicable techniques for rapidly changing urban contexts. This paper presents an effort to meet the challenge by developing a framework to estimate peak-hour boarding at light-rail transit (LRT) stations. The core part of the framework is an accessibility-weighted ridership model that multiplies potential demand by integral LRT accessibility. Potential demand around LRT stations is generated by using a distance-decay function. The integral LRT accessibility is a route-level factor that indicates the degree of attractiveness to LRT travel for stations in an LRT corridor. A case study in Wuhan, China, shows that the proposed method produces results useful for improving transit demand analysis.  相似文献   

8.
The first analytical stochastic and dynamic model for optimizing transit service switching is proposed for “smart transit” applications and for operating shared autonomous transit fleets. The model assumes a region that requires many-to-one last mile transit service either with fixed-route buses or flexible-route, on-demand buses. The demand density evolves continuously over time as an Ornstein-Uhlenbeck process. The optimal policy is determined by solving the switching problem as a market entry and exit real options model. Analysis using the model on a benchmark computational example illustrates the presence of a hysteresis effect, an indifference band that is sensitive to transportation system state and demand parameters, as well as the presence of switching thresholds that exhibit asymmetric sensitivities to transportation system conditions. The proposed policy is computationally compared in a 24-hour simulation to a “perfect information” set of decisions and a myopic policy that has been dominant in the flexible transit literature, with results that suggest the proposed policy can reduce by up to 72% of the excess cost in the myopic policy. Computational experiments of the “modular vehicle” policy demonstrate the existence of an option premium for having flexibility to switch between two vehicle sizes.  相似文献   

9.
Dynamic origin-destination (OD) demand is central to transportation system modeling and analysis. The dynamic OD demand estimation problem (DODE) has been studied for decades, most of which solve the DODE problem on a typical day or several typical hours. There is a lack of methods that estimate high-resolution dynamic OD demand for a sequence of many consecutive days over several years (referred to as 24/7 OD in this research). Having multi-year 24/7 OD demand would allow a better understanding of characteristics of dynamic OD demands and their evolution/trends over the past few years, a critical input for modeling transportation system evolution and reliability. This paper presents a data-driven framework that estimates day-to-day dynamic OD using high-granular traffic counts and speed data collected over many years. The proposed framework statistically clusters daily traffic data into typical traffic patterns using t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-means methods. A GPU-based stochastic projected gradient descent method is proposed to efficiently solve the multi-year 24/7 DODE problem. It is demonstrated that the new method efficiently estimates the 5-min dynamic OD demand for every single day from 2014 to 2016 on I-5 and SR-99 in the Sacramento region. The resultant multi-year 24/7 dynamic OD demand reveals the daily, weekly, monthly, seasonal and yearly change in travel demand in a region, implying intriguing demand characteristics over the years.  相似文献   

10.

Automated vehicles (AV) will change transport supply and influence travel demand. To evaluate those changes, existing travel demand models need to be extended. This paper presents ways of integrating characteristics of AV into traditional macroscopic travel demand models based on the four-step algorithm. It discusses two model extensions. The first extension allows incorporating impacts of AV on traffic flow performance by assigning specific passenger car unit factors that depend on roadway type and the capabilities of the vehicles. The second extension enables travel demand models to calculate demand changes caused by a different perception of travel time as the active driving time is reduced. The presented methods are applied to a use case of a regional macroscopic travel demand model. The basic assumption is that AV are considered highly but not fully automated and still require a driver for parts of the trip. Model results indicate that first-generation AV, probably being rather cautious, may decrease traffic performance. Further developed AV will improve performance on some parts of the network. Together with a reduction in active driving time, cars will become even more attractive, resulting in a modal shift towards car. Both circumstances lead to an increase in time spent and distance traveled.

  相似文献   

11.
State of the art travel demand models for urban areas typically distinguish four or five main modes: walking, cycling, public transport and car. The mode car can be further split into car-driver and car-passenger. As the importance of ridesharing may increase in the coming years, ridesharing should be addressed as an additional sub or main mode in travel demand modeling. This requires an algorithm for matching the trips of suppliers (typically car drivers) and demanders (travelers of non-car modes). The paper presents a matching algorithm, which can be integrated in existing travel demand models. The algorithm works likewise with integer demand, which is typical for agent-based microscopic models, and with non-integer demand occurring in travel demand matrices of a macroscopic model. The algorithm compares two path sets of suppliers and demanders. The representation of a path in the road network is reduced from a sequence of links to a sequence of zones. The zones act as a buffer along the path, where demanders can be picked up. The travel demand model of the Stuttgart Region serves as an application example. The study estimates that the entire travel demand of all motorized modes in the Stuttgart Region could be transported by 7% of the current car fleet with 65% of the current vehicle distance traveled, if all travelers were willing to either use ridesharing vehicles with 6 seats or traditional rail.  相似文献   

12.
Toll prices on traffic networks have been traditionally determined using a single expected demand value or deterministic demand supply relationships. Previous work by Gardner, Unnikrishnan, and Waller (2008) show that marginal social cost prices obtained using the expected value of demand can significantly deteriorate system performance especially when the actual system state deviates from the planned forecasted conditions. Determining the globally optimal tolls which are resilient to demand uncertainty entails a significantly high number of system performance evaluations which is a computationally intensive process. This work presents two practical methods to arrive at near optimal tolls – single point approximation methods and multiple point inflation/deflation approximation methods – and compares their performance in terms of computational efficiency and proximity to the optimal solution with two other commonly used meta-heuristics – Genetic Algorithm and Adaptive Simulated Annealing. Computational tests reveal that inflation/deflation methods can provide “near to optimal solutions” using a lower number of system performances in comparison to the meta-heuristics and single point approximation methods.  相似文献   

13.
This paper presents two formulations and two solution procedures for a capacitated maximum covering location problem. In the first formulation, the problem is presented as a mixed-interger linear programming model which maximizes covered demand. In the second model, the objective function maximizes the weighted covered demand while at the same time minimizing the average distance from the uncovered demands to the located facilities. The second formulation attempts to account for the assignment of the demand which is not “covered” to located facilities which have excess capacity. This assignment is very important, especially for locating emergency service facilities. Two heuristic procedures are proposed to solve these models. These are based on greedy adding technique and Lagrangian relaxation. At each iteration, the demands are allocated to the facilities using an out-of-kilter method. The performance of the solution techniques are compared to the optimal solutions in a variety of test problems.  相似文献   

14.
Project promoters, forecasters, and managers sometimes object to two things in measuring inaccuracy in travel demand forecasting: (1) using the forecast made at the time of making the decision to build as the basis for measuring inaccuracy and (2) using traffic during the first year of operations as the basis for measurement. This paper presents the case against both objections. First, if one is interested in learning whether decisions about building transport infrastructure are based on reliable information, then it is exactly the traffic forecasted at the time of making the decision to build that is of interest. Second, although ideally studies should take into account so-called demand “ramp up” over a period of years, the empirical evidence and practical considerations do not support this ideal requirement, at least not for large-N studies. Finally, the paper argues that large samples of inaccuracy in travel demand forecasts are likely to be conservatively biased, i.e., accuracy in travel demand forecasts estimated from such samples would likely be higher than accuracy in travel demand forecasts in the project population. This bias must be taken into account when interpreting the results from statistical analyses of inaccuracy in travel demand forecasting.  相似文献   

15.
This paper presents an integrated transit-oriented travel demand modeling procedure within the framework of geographic information systems (GIS). Focusing on transit network development, this paper presents both the procedure and algorithm for automatically generating both link and line data for transit demand modeling from the conventional street network data using spatial analysis and dynamic segmentation. For this purpose, transit stop digitizing, topology and route system building, and the conversion of route and stop data into link and line data sets are performed. Using spatial analysis, such as the functionality to search arcs nearest from a given node, the nearest stops are identified along the associated links of the transit line, while the topological relation between links and line data sets can also be computed using dynamic segmentation. The advantage of this approach is that street map databases represented by a centerline can be directly used along with the existing legacy urban transportation planning systems (UTPS) type travel modeling packages and existing GIS without incurring the additional cost of purchasing a full-blown transportation GIS package. A small test network is adopted to demonstrate the process and the results. The authors anticipate that the procedure set forth in this paper will be useful to many cities and regional transit agencies in their transit demand modeling process within the integrated GIS-based computing environment.  相似文献   

16.
This note presents the author's conjectures on several symptoms raised in Kitamura's assessment of activity-based travel analysis. It focuses on some of the characteristics of the development of activity-based approaches that may help explain their limited impact to date on travel demand forecasting practice. The broader role and potential contributions of activity analysis of the demand for infrastructure systems are emphasized.  相似文献   

17.
Regardless of existing types of transportation and traffic model and their applications, the essential input to these models is travel demand, which is usually described using origin–destination (OD) matrices. Due to the high cost and time required for the direct development of such matrices, they are sometimes estimated indirectly from traffic measurements recorded from the transportation network. Based on an assumed demand profile, OD estimation problems can be categorized into static or dynamic groups. Dynamic OD demand provides valuable information on the within-day fluctuation of traffic, which can be employed to analyse congestion dissipation. In addition, OD estimates are essential inputs to dynamic traffic assignment (DTA) models. This study presents a fuzzy approach to dynamic OD estimation problems. The problems are approached using a two-level model in which demand is estimated in the upper level and the lower level performs DTA via traffic simulation. Using fuzzy rules and the fuzzy C-Mean clustering approach, the proposed method treats uncertainty in historical OD demand and observed link counts. The approach employs expert knowledge to model fitted link counts and to set boundaries for the optimization problem by defining functions in the fuzzification process. The same operation is performed on the simulation outputs, and the entire process enables different types of optimization algorithm to be employed. The Box-complex method is utilized as an optimization algorithm in the implementation of the approach. Empirical case studies are performed on two networks to evaluate the validity and accuracy of the approach. The study results for a synthetic network and a real network demonstrate the robust performance of the proposed method even when using low-quality historical demand data.  相似文献   

18.
Arid areas are characterized by dispersed patterns of population and economic activities in a hot and dry environment. Although basic human needs are identical everywhere, patterns of travel behaviour in arid lands are different from the patterns in more humid areas. The different behavioural patterns imply somewhat different demand patterns for transport services in general and transit services in particular. Good access to the scattered small communities and more so to the remote urban centres is of prime concern in the sparsely populated arid areas. And the demand patterns themselves raise the need to develop unusual types of service based on local conditions. This article presents the effects of the arid spatial and climatic conditions on transit demand and supply. After examining the service standards required in the sparselands and using the Israeli Negev region as an example, guidelines for developing regional transit systems in these arid areas are put forward.  相似文献   

19.
Rosenfield  Adam  Attanucci  John P.  Zhao  Jinhua 《Transportation》2020,47(4):1907-1932
Transportation - This paper presents a trial aimed at reducing parking demand at a large urban employer through an informational campaign and monetary incentives. A 6-week randomized controlled...  相似文献   

20.
This paper presents a procedure for the estimation of origin‐destination (O‐D) matrices for a multimodal public transit network. The system consists of a number of favored public transit modes that are obtained from a modal split process in a traditional four‐step transportation model. The demand of each favored mode is assigned to the multimodal network, which is comprised of a set of connected links of different public transit modes. An entropy maximization procedure is proposed to simultaneously estimate the O‐D demand matrices of all favored modes, which are consistent with target data sets such as the boarding counts and line segment flows that are observed directly in the network. A case study of the Hong Kong multimodal transit network is used to demonstrate the effectiveness of the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号