首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
After the widespread deployment of Advanced Traveler Information Systems, there exists an increasing concern about their profitability. The costs of such systems are clear, but the quantification of the benefits still generates debate. This paper analyzes the value of highway travel time information systems. This is achieved by modeling the departure time selection and route choice with and without the guidance of an information system. The behavioral model supporting these choices is grounded on the expected utility theory, where drivers try to maximize the expected value of their perceived utility. The value of information is derived from the reduction of the unreliability costs as a consequence of the wiser decisions made with information. This includes the reduction of travel times, scheduling costs and stress. This modeling approach allows assessing the effects of the precision of the information system in the value of the information.Different scenarios are simulated in a generic but realistic context, using empirical data measured on a highway corridor accessing the city of Barcelona, Spain. Results show that travel time information only has a significant value in three situations: (1) when there is an important scheduled activity at the destination (e.g. morning commute trips), (2) in case of total uncertainty about the conditions of the trip (e.g. sporadic trips), and (3) when more than one route is possible. Information systems with very high precision do not produce better results. However, an acceptable level of precision is completely required, as information systems with very poor precision may even be detrimental. The paper also highlights the difference between the user value and the social value of the information. The value of the information may not benefit only the user. For instance, massive dissemination of travel time information contributes to the reduction of day-to-day travel time variance. This favors all drivers, even those without information. In these situations travel time information has the property that its social benefits exceed private benefits (i.e. information has positive externalities). Of course, drivers are only willing to cover costs equal or smaller than their private benefits, which in turn may justify subsidies for information provision.  相似文献   

2.
This study analyzes the annual vacation destination choices and related time allocation patterns of American households. More specifically, an annual vacation destination choice and time allocation model is formulated to simultaneously predict the different vacation destinations that a household visits in a year, and the time (no. of days) it allocates to each of the visited destinations. The model takes the form of a multiple discrete–continuous extreme value (MDCEV) structure. Further, a variant of the MDCEV model is proposed to reduce the prediction of unrealistically small amounts of vacation time allocation to the chosen destinations. To do so, the continuously non-linear utility functional form in the MDCEV framework is replaced with a combination of a linear and non-linear form. The empirical analysis was performed using the 1995 American Travel Survey data, with the United States divided into 210 alternative destinations. The model estimation results provide several insights into the determinants of households’ vacation destination choice and time allocation patterns. Results suggest that travel times and travel costs to the destinations, and lodging costs, leisure activity opportunities (measured by employment in the leisure industry), length of coastline, and weather conditions at the destinations influence households’ destination choices for vacations. The annual vacation destination choice model developed in this study can be incorporated into a larger national travel modeling framework for predicting the national-level, origin–destination flows for vacation travel.  相似文献   

3.
We develop a model for integrated analysis of household location and travel choices and investigate it from a theoretical point of view.Each household makes a joint choice of location (zone and house type) and a travel pattern that maximizes utility subject to budget and time constraints. Prices for housing are calculated so that demand equals supply in each submarket. The travel pattern consists of a set of expected trip frequencies to different destinations with different modes. The joint time and budget constraints ensure that time and cost sensitivities are consistent throughout the model. Choosing the entire travel pattern at once, as opposed to treating travel decisions as a series of isolated choices, allows the marginal utilities of trips to depend on which other trips are made.When choosing trip frequencies to destinations, households are assumed to prefer variation to an extent varying with the purpose of the trip. The travel pattern will tend to be more evenly distributed across trip ends the less similar destinations and individual preferences are. These heterogeneities of destinations and individual preferences, respectively, are expressed in terms of a set of parameters to be estimated.  相似文献   

4.
Electric travelling appears to dominate the transport sector in the near future due to the needed transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great importance to stakeholders including planners and policymakers, for example in order to locate charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those choices. Respondents were requested to choose a route among six alternatives: freeways, arterial ways, and local streets with and without fast charging. Our findings suggest that the classic route attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and destination) and charging characteristics (availability of a slow charging point at the destination, fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the origin is high and a slow charger at the destination is available, routes without fast charging are likely to be preferred. Moreover, local streets (associated with slow speeds and less energy consumption) could be preferred if the SOC at the destination is expected to be low while arterial ways might be selected when a driver must recharge his/her car during the trip via fast charging.  相似文献   

5.
Reliable route guidance can be obtained by solving the reliable a priori shortest path problem, which finds paths that maximize the probability of arriving on time. The goal of this paper is to demonstrate the benefits and applicability of such route guidance using a case study. An adaptive discretization scheme is first proposed to improve the efficiency in computing convolution, a time-consuming step used in the reliable routing algorithm to obtain path travel time distributions. Methods to construct link travel time distributions from real data in the case study are then discussed. Particularly, the travel time distributions on arterial streets are estimated from linear regression models calibrated from expressway data. Numerical experiments demonstrate that optimal paths are substantially affected by the reliability requirement in rush hours, and that reliable route guidance could generate up to 5-15% of travel time savings. The study also verifies that existing algorithms can solve large-scale problems within a reasonable amount of time.  相似文献   

6.
Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choosing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic network conditions. The proposed model is compared with UE and SUE models and the difference in both behavioral foundation and model characteristics is highlighted. A numerical example is introduced to demonstrate how such model can be used in traffic assignment problem. The model is then tested with GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota. Our data suggest there is no single dominant route (defined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a portfolio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability.  相似文献   

7.
Transportation - Bicycling is an increasingly popular mode of travel in Canadian urban areas, like the Greater Toronto and Hamilton Area (GTHA). While trip origins and destinations can be inferred...  相似文献   

8.
Various transportation studies carried out in India, while estimating the travel demand, do not take into consideration the travel characteristics of different income groups. The conventional transportation travel demand model lacks the ability to address the travel needs of the urban poor. This paper explores the factors influencing the travel destinations of urban poor living in informal settlements and finds that travel times have a significant negative impact on the choice to travel and influences the choice of the destinations. The study also finds that the inhabitants of informal settlements are adversely affected by urban policies that displace them and rehabilitate them far from their employment opportunities and that the travel characteristics of low income households living in informal settlements are significantly different from higher income households.  相似文献   

9.
We investigate how customers respond to an opaque airline product offered by a European carrier. In this opaque product design, customers are randomly assigned to travel to one of approximately ten destinations; however, for a fee they may exclude one or more destinations from the choice set (or a particular package design) prior to learning which destination they will travel to. We use a multidimensional binary logit model to predict the probability that one or more alternatives will be chosen by a customer. Results show that customers are more likely to pay to exclude destinations located close to the origin airport and destinations that speak the same language as the origin airport. Length of stay, cost of living at the destination, and measures of destination attractiveness are also found to be significant predictors for some package designs. Based on these findings, we offer general recommendations for how to design opaque packages for airline customers.  相似文献   

10.
We propose a new mathematical formulation for the problem of optimal traffic assignment in dynamic networks with multiple origins and destinations. This problem is motivated by route guidance issues that arise in an Intelligent Vehicle-Highway Systems (IVHS) environment. We assume that the network is subject to known time-varying demands for travel between its origins and destinations during a given time horizon. The objective is to assign the vehicles to links over time so as to minimize the total travel time experienced by all the vehicles using the network. We model the traffic network over the time horizon as a discrete-time dynamical system. The system state at each time instant is defined in a way that, without loss of optimality, avoids complete microscopic detail by grouping vehicles into platoons irrespective of origin node and time of entry to network. Moreover, the formulation contains no explicit path enumeration. The state transition function can model link travel times by either impedance functions, link outflow functions, or by a combination of both. Two versions (with different boundary conditions) of the problem of optimal traffic assignment are studied in the context of this model. These optimization problems are optimal control problems for nonlinear discrete-time dynamical systems, and thus they are amenable to algorithmic solutions based on dynamic programming. The computational challenges associated with the exact solution of these problems are discussed and some heuristics are proposed.  相似文献   

11.
The way in which a person organizes his or her day, both temporally and spatially, is a highly important matter to travel behavior and travel demand modeling. Many times, the focus of these models is to accurately predict the “where” and “when”, without paying adequate attention to the “why.” The participation in activities, and therefore the selection of a place for these activities has been recently discussed within the framework of subjective well being. The motivation of happiness can be used to understand how and why people make the choices that they do. Many different criteria are used by individuals in the selection of destinations. These criteria range from attributes such as distance and cost, to attributes such as comfort, security and social aspects in determining the most rewarding destinations. Aspects contributing to a rewarding experience can also be viewed as those decision criteria that lead to the highest satisfaction. In this paper, several attributes of places and decision-making are explored for their potential to explain destination choices. First, a broader analysis of destination choice and criteria used helps us develop a geographic representation of attitudes and views regarding the area of Santa Barbara, California. Following this general evaluation of space, individual activity types are statistically analyzed in the importance different attributes play in the selection of a destination that leads to higher satisfaction.  相似文献   

12.
How and why travel contributes to our life satisfaction is of considerable import for transportation policy and planning. This paper empirically examines this relationship using data from the American Time Use Survey. It finds that, controlling for relevant demographic, geographic, and temporal covariates, travel time per day is significantly and positively associated with life satisfaction. This relationship is attenuated, but still significant, when the amount of time spent participating in out-of-home activities is controlled for. Time spent bicycling is strongly associated with higher life satisfaction, though it attains significance only in some models; time spent walking is also quite positive, though it is not significant. However, both walking and bicycling are positively and significantly associated with life satisfaction when time spent on purely recreational walking and bicycling is included. Life satisfaction is positively and significantly associated with time spent traveling for the purposes of eating and drinking, religious activities, volunteering, and playing and watching sports. Travel time exhibits a strong positive relationship with life satisfaction in smaller towns and cities, but in large cities the association weakens, and for very large cities travel time may actually not be associated with life satisfaction at all. This may be due to the costs of traffic congestion, which disproportionately exists in large cities. In all, while the associations between travel and life satisfaction are clear, the causal story is complex, with the positive relationships potentially being explained by (1) travel allowing us to access destinations that make us happy, (2) the act of travel itself being fulfilling, and/or (3) intrinsically happier people being more likely to travel. In all likelihood, all three factors are at play.  相似文献   

13.
There is growing interest in establishing additional evidence, under the umbrella of the wider economy impacts of transport infrastructure projects, to support transport projects in general and public transport projects in particular that struggle to obtain benefit–cost ratios sufficient to gain the support of financial agencies. This paper focuses on one element of wider economy impacts, often referred to as effective economic (employment) density or employment agglomeration impacts, and another, less usually identified, social accessibility impact (SAI) which we refer to as effective social density, which in broad terms provide, correspondingly, evidence of the potential gains in work-related output (often referred to as productivity gains) and potential gains in non-work-related outputs. Both are associated with gains in individual and household benefit attributable to improved accessibility to services linked with populations and particular locations. The SAIs may capture some of the induced benefits in those jurisdictions where these are included routinely in benefit–cost analysis, and the methodology here is most appropriate to those settings where an existing calibrated demand curve may not be available. Using the proposed high speed rail (HSR) project between Sydney and Melbourne as the empirical setting, we identify economic agglomeration and social accessibility benefits for work and non-work related activity respectively. We find the former to be relatively small compared to the significant gains associated with non-work related travel activity, suggesting the greatest benefits associated with HSR, especially for those residents outside of the major metropolitan areas, will be non-work related travel activity.  相似文献   

14.
Travel time is very critical for emergency response and emergency vehicle (EV) operations. Compared to ordinary vehicles (OVs), EVs are permitted to break conventional road rules to reach the destination within shorter time. However, very few previous studies address the travel time performance of EVs. This study obtained nearly 4-year EV travel time data in Northern Virginia (NOVA) region using 76,000 preemption records at signalized intersections. First, the special characteristics of EV travel time are explored in mean, median, standard deviation and also the distribution, which display largely different characteristics from that of OVs in previous studies. Second, a utility-based model is proposed to quantify the travel time performance of EVs. Third, this paper further investigates two important components of the utility model: benchmark travel time and standardized travel time. The mode of the distribution is chosen as benchmark travel time, and its nonlinear decreasing relationship with the link length is revealed. At the same time, the distribution of standardized travel time is fitted with different candidate distributions and Inv. Gaussian distribution is proved to be the most suitable one. Finally, to validate the proposed model, we implement the model in case studies to estimate link and route travel time performance. The results of route comparisons also show that the proposed model can support EV route choice and eventually improve EV service and operations.  相似文献   

15.
It is widely acknowledged that cyclists choose their route differently to drivers of private vehicles. The route choice decision of commuter drivers is often modelled with one objective, to reduce their generalised travel cost, which is a monetary value representing the combined travel time and vehicle operating cost. Commuter cyclists, on the other hand, usually have multiple incommensurable objectives when choosing their route: the travel time and the suitability of a route. By suitability we mean non-subjective factors that characterise the suitability of a route for cycling, including safety, traffic volumes, traffic speeds, presence of bicycle lanes, whether the terrain is flat or hilly, etc. While these incommensurable objectives are difficult to be combined into a single objective, it is also important to take into account that each individual cyclist may prioritise differently between travel time and suitability when they choose a route.This paper proposes a novel model to determine the route choice set of commuter cyclists by formulating a bi-objective routing problem. The two objectives considered are travel time and suitability of a route for cycling. Rather than determining a single route for a cyclist, we determine a choice set of optimal alternative routes (efficient routes) from which a cyclist may select one according to their personal preference depending on their perception of travel time versus other route choice criteria considered in the suitability index. This method is then implemented in a case study in Auckland, New Zealand.The study provides a starting point for the trip assignment of cyclists, and with further research, the bi-objective routing model developed can be applied to create a complete travel demand forecast model for cycle trips. We also suggest the application of the developed methodology as an algorithm in an interactive route finder to suggest efficient route choices at different levels of suitability to cyclists and potential cyclists.  相似文献   

16.
Holiday travel behavior, individual characteristics of holiday travelers and strategies to change holiday travel behavior are the subjects of this article. From the environmental perspective, the journey to the destinations is the most critical aspect of traveling. Based on a 2003 survey of 1991 German inhabitants, the kilometers traveled and the choice of transportation mode for holiday purposes have been quantified. According to the number of trips and kilometers traveled, four travel groups have been identified. The groups vary according to socio-demographics, psychological factors, number of holiday trips, and travel mode choice. Persons who traveled to more distant destinations also traveled more often and used air travel for more than 60% of their trips. For the other groups, car travel was more important. Correlating the four travel groups with greenhouse gas emissions reveals that the smallest group—the long-haul travelers—was responsible for 80% of the emissions of the whole sample. Income, education, and openness to change were main indicators of individual greenhouse gas emissions. Target group oriented strategies to reduce the environmental impact of holiday mobility are discussed against the background of 84 in-depth interviews conducted with selected representatives of the first survey.  相似文献   

17.
Real-time traffic information is increasingly available to support route choice decisions by reducing the travel time uncertainty. However it is likely that a traveler cannot assess all available information on all alternative routes due to time constraints and limited cognitive capacity. This paper presents a model that is consistent with a general network topology and can potentially be estimated based on revealed preference data. It explicitly takes into account the information acquisition and the subsequent path choice. The decision to acquire information is assumed to be based on the cognitive cost involved in the search and the expected benefit defined as the expected increase in utility after the search. A latent class model is proposed, where the decision to search or not to search and the depth of the search are latent and only the final path choices are observed. A synthetic data set is used for the purpose of validation and ease of illustration. The data are generated from the postulated cognitive-cost model, and estimation results show that the true values of the parameters can be recovered with enough variability in the data. Two other models with simplifying assumptions of no information and full information are also estimated with the same set of data with significantly biased path choice utility parameters. Prediction results show that a smaller cognitive cost encourages information search on risky and fast routes and thus higher shares on those routes. As a result, the expected average travel time decreases and the variability increases. The no-information and full-information models are extreme cases of the more general cognitive-cost model in some cases, but not generally so, and thus the increasing ease of information acquisition does not necessarily warrant a full-information model.  相似文献   

18.
We study how to estimate real time queue lengths at signalized intersections using intersection travel times collected from mobile traffic sensors. The estimation is based on the observation that critical pattern changes of intersection travel times or delays, such as the discontinuities (i.e., sudden and dramatic increases in travel times) and non-smoothness (i.e., changes of slopes of travel times), indicate signal timing or queue length changes. By detecting these critical points in intersection travel times or delays, the real time queue length can be re-constructed. We first introduce the concept of Queue Rear No-delay Arrival Time which is related to the non-smoothness of queuing delay patterns and queue length changes. We then show how measured intersection travel times from mobile sensors can be processed to generate sample vehicle queuing delays. Under the uniform arrival assumption, the queuing delays reduce linearly within a cycle. The delay pattern can be estimated by a linear fitting method using sample queuing delays. Queue Rear No-delay Arrival Time can then be obtained from the delay pattern, and be used to estimate the maximum and minimum queue lengths of a cycle, based on which the real-time queue length curve can also be constructed. The model and algorithm are tested in a field experiment and in simulation.  相似文献   

19.
A dynamic traffic assignment (DTA) model typically consists of a traffic performance model and a route choice model. The traffic performance model describes how traffic propagates (over time) along routes connecting origin-destination (OD) pairs, examples being the cell transmission model, the vertical queueing model and the travel time model. This is implemented in a dynamic network loading (DNL) algorithm, which uses the given route inflows to compute the link inflows (and hence link costs), which are then used to compute the route travel times (and hence route costs). A route swap process specifies the route inflows for tomorrow (at the next iteration) based on the route inflows today (at the current iteration). A dynamic user equilibrium (DUE), where each traveller on the network cannot reduce his or her cost of travel by switching to another route, can be sought by iterating between the DNL algorithm and the route swap process. The route swap process itself takes up very little computational time (although route set generation can be very computationally intensive for large networks). However, the choice of route swap process dramatically affects convergence and the speed of convergence. The paper details several route swap processes and considers whether they lead to a convergent system, assuming that the route cost vector is a monotone function of the route inflow vector.  相似文献   

20.
This paper seeks to explore the relationship between mode and destination choice in an integrated nested choice model. A fundamental argument can be made that in certain circumstances, the ordering of choices should be reversed from the usual sequence of destination choice preceding mode choice. This results in a travel demand model where travelers are more likely to change destinations than to change transportation modes. For small and medium size urban areas, particularly in the United States, with less well developed public transit systems that draw few choice riders, this assumption makes much more sense than the traditional modeling assumptions. The models used in the new travel modeling system developed for Knoxville, Tennessee utilize this reversed ordering, with generally good results, which required no external tinkering in the logsum parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号