首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为解决传统齿轮用钢20CrMnTi淬透性适配不好,钛夹杂对接触疲劳寿命的不利影响等问题,本试验对日本牌号齿轮钢SCr420H进行了应用研究。SCr420H钢与20CrMnTi钢的晶粒长大倾向、生产工艺性能、单齿弯曲、单对齿轮疲劳及装车等各项试验对比的结果表明,SCr420H是取代20CrMnTi用于EQ140变速器齿轮的较理想钢种。  相似文献   

2.
对采用我国新研制的17Cr2Mn2TiH钢生产的重型汽车驱动桥圆锥齿轮进行了台架寿命试验,结果表明,该齿轮完全可以达到重型汽车驱动桥齿轮的相关技术要求.同时,采用17Cr2Mn2TiH钢替代含Ni较高的17CrNiM06H、20CrNi3H等钢,不仅大大降低了齿轮钢材成本,而且热处理工艺简单.因此可以大大降低其制造成本.这是目前我国重型汽车驱动桥齿轮行业摆脱制造成本过高的一种很好尝试.  相似文献   

3.
面向国内某摩托车企业产品开发需求,针对3种牌号的车用齿轮钢,进行了弯冲、接触疲劳和单齿弯曲疲劳对比检测,并结合金相、硬度、断口表征手段,综合评价了3种齿轮钢服役性能优劣。在此基础上进一步从零件角度验证了3种齿轮钢的应用成效性。结果表明,16MnCr5H的综合力学性能、工艺性能、接触疲劳和弯曲疲劳与20CrMoH相当,优于20CrMnTiH,因此可代替20CrMoH和20CrMnTiH制造高负荷的摩托车齿轮,满足性能提升及应用性价比目标。  相似文献   

4.
重点介绍了奥-贝球铁齿轮的研制机理和制造工艺技术。采用完善的铸造工艺技术,生产出内部无缺陷的高质量的球铁齿轮铸件,经铁素体化处理后,改善其加工性能,然后应用先进的等温淬火工艺和设备进行贝氏体化热处理,得到硬度较高的下贝氏体+马氏体组织,再经过表面喷丸强化使其大幅度提高齿轮弯曲疲劳性能,从而获得可代替传统渗碳钢的高强度、高耐磨性的硬齿面齿轮。  相似文献   

5.
通过对ZF7、SCM420H等国产化汽车齿轮钢与20CrMnTi钢的对比试验表明,喷丸对渗碳件条件(N=5×10~6次)接触疲劳极限可提高6%;在较低应力下,接触疲劳寿命明显提高,如在σ_(max)=3300MPa下,寿命提高60%左右;在较高应力下,影响不大。喷丸是改善零件表层种种缺陷的有效而简便的方法。  相似文献   

6.
目前对重型汽车驱动桥锥齿轮疲劳性能的考核,主要是进行轮齿的弯曲疲劳性能考核。汽车行驶过程中一旦发生轮齿折断,齿轮将完全丧失其传递运动和动力的功能,因此对齿轮弯曲疲劳性能的考核非常重要。试验表明,齿轮材料与主要加工工艺对其疲劳性能影响很大。这些因素包括渗碳钢的化学成分、钢的纯净度和锻造。预备热处理、渗碳淬火、表面强化、机械加工等工艺。  相似文献   

7.
前言在国内外的汽车制造工业中,钢材的淬透性已成为制造汽车齿轮、选择钢种和制定热处理工艺的重要依据之一。如日本和西德等国,制定了钢材的淬透性标准,建立了“H”钢系列。对精密复杂的齿轮,将钢材的淬透性控制在较窄的范围内,以控制齿轮的变形,使大量生产的汽车齿轮具有较高的精度。为了摸清20CrMnTi钢的淬透性对齿轮工艺、热处理变形及使用寿命的影响,以及为国  相似文献   

8.
适合中小模数齿轮渗碳及碳氮共渗用钢   总被引:1,自引:0,他引:1  
现在我国制造中小模数齿轮常用的材料是20CrMnTi钢。含钛钢中的氮化钛菱形夹杂物会影响齿轮的接触疲劳寿命,而且采用碳氮共渗时又易产生三黑组织。本文介绍了20CrMoH钢和20CrMnTi钢原材料、工艺和热处理后机械性能的对比试验,以及20CrMoH钢齿轮装车使用试验情况。试验结果表明,20CrMoH齿轮比20CrMnTi齿轮渗碳淬火后变形小,弯曲疲劳寿命高。20CrMoH钢适于制造中小模数齿轮。  相似文献   

9.
本文利用旋转弯曲疲劳试验方法,研究工业电炉+炉外精炼流程生产的两种齿轮钢的疲劳性能。研究结果表明,由于细小的Nb(C,N)析出相在奥氏体晶界起钉扎作用,20CrMoNbH渗碳齿轮钢渗碳层原奥氏体晶粒平均尺寸为16μm,明显细于20CrMoH钢的26μm。20CrMoNbH钢渗碳试样的疲劳强度极限值为1085MPa,高于20CrMoH钢的995MPa。观察疲劳试样断口发现,疲劳裂纹起源于渗碳层,并沿原奥氏体晶界扩展,细化渗碳层晶粒有利于提高疲劳裂纹扩展阻力,因此改善疲劳性能。  相似文献   

10.
简述了评价渗碳钢弯曲疲劳的几种主要试验方法,即旋转弯曲疲劳试验、三点弯曲疲劳试验、四点弯曲疲劳试验、悬臂梁弯曲疲劳试验以及标准齿轮弯曲疲劳试验等,并针对各试验方法的适用领域以及齿轮弯曲疲劳强度的提高途径给出了建议,以期为齿轮弯曲疲劳评价提供依据和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号