首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以苏州地铁5号线某区间盾构隧道为研究对象,以施工期间掘进参数及隧道地表实测监测数据为依据,分析盾构掘进工程中地质条件、土仓压力、推进速度等因素对地表变形的影响。结果分析表明:盾构掘进面前方一倍洞径处,地表易隆起,地表隆起量随着推进速度、土仓压力、同步注浆压力的增大而增大;随着盾构掘进,地层受施工扰动及水土损失影响,地层开始出现沉降,并不断增大,在距离盾尾两倍洞径位置附近趋于稳定。文中针对盾构在富水砂层、粉土、粉质粘土段掘进存在的问题,提出了地表变形控制措施。  相似文献   

2.
常家山隧道地质变化复杂,洞身穿过煤系统地层及采空区空易出现塌方,介绍了PRK88+665处方的处治措施及施工中应注意的问题。  相似文献   

3.
复杂地质环境中进行盾构进出洞施工有很大的风险,端头加固措施被应用于工程中来提高洞门区域土体强度.以苏州轨道交通5号线某区间中间风井盾构接收工程为背景,针对苏州富水软弱地层特点,设计采用冻结法加固洞门区域土体,并采用钢套筒进行盾构接收,设计提出了相关工艺参数以及施工方法.根据盾尾和冷冻加固区域的相对位置以及施工流程,将盾构进洞段的推进施工分为三个阶段,比较分析各阶段的掘进速度、土仓压力等参数.并且监测数据显示对地表沉降的控制效果较好.冻结法与钢套筒法联合接收施工技术的成功应用能有效抑制漏水漏砂、有效控制地层变形,能为苏州周边地区或者相似地质特点的盾构隧道施工提高参考.  相似文献   

4.
济南地铁R1线大杨庄站盾构接收施工中,考虑到地质条件和施工环境复杂,对原接收端头加固方案进行完善,增设液氮垂直冻结与水中接收的综合施工方案。通过优化液氮冻结参数,控制液氮冻结各环节,合理安排盾构施工工序,控制盾构水中接收的各项技术指标,使工程在复杂工况下得以顺利实施。监测数据表明:液氮垂直冻结与水中接收综合施工技术能有效控制地层损失率,车站、隧道结构以及周边建筑物沉降量均在安全范围内,施工质量符合规范要求,可供临近繁忙交通要道、盾构穿越富水砂卵地层的工程施工借鉴。  相似文献   

5.
盾构隧道纵向地震响应分析   总被引:7,自引:2,他引:7  
为了探讨盾构隧道的纵向地震响应特性,采用地层一隧道整体三维有限元模型,对武汉长江越江盾构隧道的地震响应进行了分析,主要研究了合理的盾构隧道力学模型、隧道与地层之间的相互作用以及隧道的振动特性.通过隧道与地层的整体分析,得到了盾构隧道位移和应力的分布及其随时间的变化曲线.计算结果表明:压缩波引起的纵向拉、压应力和剪切波引起的扭曲变形是隧道抗震设计的关键.  相似文献   

6.
以南京地铁三号线秣周路站~明挖岔线段盾构区间施工为背景,当盾构处于软硬不均淤泥质地层中时,通过分析泡沫剂的比例、推进速度、刀盘扭矩、油缸总推力、土仓压力等重要参数的变化趋势,摸索总结出不同地质条件下与之相适应的泡沫剂使用变化规律,最大程度地保证盾构的正常推进。  相似文献   

7.
详细介绍了贵州省遵义市青杠坡隧道的工程地质条件,包括地形地貌、地质构造特征、地层岩性、水文地质条件等,通过分析可知,地质勘察分析对隧道工程的设计施工至关重要,建议施工中如发现新的地质问题及时反馈、及时解决。  相似文献   

8.
盾构是穿越江河水下隧道的主要工程方法之一.针对南湖路湘江隧道盾构段围岩中岩溶具有成岩差、易软化、崩解以及石英质和砾石含量高特性的红层软岩、上软下硬的浅覆土等特征,分析了复杂地质条件下盾构施工的风险,提出了应对措施,其结果可为南湖路湘江隧道的设计和施工提供指导性建议.  相似文献   

9.
广西南宁地铁线路穿越多种复杂地质,泥岩作为该地区一种典型地质,盾构机在该地层中掘进,容易出现两种典型的问题:一是盾构机掘进方向姿态难以纠偏,二是隧道管片容易上浮.出现上述问题的要因是泥岩地质较密实且具有一定的强度和微膨胀性,不利于盾构机姿态纠偏,尤其是小曲线隧道;泥岩具有稳定性,盾构同步注浆浆液初凝前对管片造成上浮.通...  相似文献   

10.
随着长大隧道修建的越来越多,复杂地质条件下斜井施工成为隧道施工必须解决的关键技术问题。万荣隧道2#斜井和正洞交叉处全断面位于厚砂层、自稳性差,根据地质条件,挑顶段分五阶段进行施工,采用水平旋喷桩加固地层,并分别辅以内插无缝钢管、异形拱架支护、增设超前小导管支护等措施,安全、顺利、快速地完成挑顶施工。详细介绍了水平旋喷桩在隧道斜井砂质地层挑顶施工中的应用,为解决复杂地质条件下斜井施工积累了相关经验。  相似文献   

11.
随着我国公路建设日新月异.隧道建设项目日益增多。在隧道施工建设中常会遇到浅埋地层松散软弱,破碎围岩带等不良地质段。由于浅埋地层埋藏较浅,大都是风化破碎的隧道围岩,受力复杂,导致围岩和支护应力分布和变形非常复杂.尤其是在地形起伏较大的丘陵地带,在隧道施工中.面临更为复杂的围岩应力分布和衬砌受力变形状况,增加了设计和施工难度。  相似文献   

12.
为分析回填土地层中浅埋盾构隧道的土舱压力设置对地层变形的影响问题,根据重庆轨道交通五号线北延伸段工程区间隧道施工过程建立盾构施工数值模型,设置监测断面,对不同开挖阶段和不同土舱压力下的地层变形情况和沉降曲线进行了提取和分析。研究结果表明:在依托工程条件下,盾构隧道掘进施工过程中引起的地表沉降槽幅宽在3倍洞径左右,土舱压力取值为0.125MPa左右时对地层变形的影响最小。  相似文献   

13.
为解决城市浅埋地铁隧道下穿岩溶地层高速公路路基时导致的路基变形问题,以某市地铁矿山法隧道下穿高速公路路基为例,采用理论设计与施工监测相结合的方法,从岩溶处理、地下水控制及隧道支护等方面进行研究。研究结果表明:针对该路段灰岩溶洞分布不规则、裂隙水分布复杂的地质条件,对溶洞和地下水进行分区处理,得到了良好的效果;采用溶洞和地下水优先处理及双向大管棚超前支护后进行隧道施工的方法,可使高速公路路基的沉降得到有效控制,满足高速公路路基的沉降控制标准。  相似文献   

14.
目前研究中的盾构隧道下穿高速铁路桥梁段扰动性建模方法建模效果较差,本文考虑地层变形规律提出一种新的盾构隧道下穿高速铁路桥梁段扰动性建模方法。首先分析地层变形规律,从地层受压期、地层下沉期以及地层微稳定期3个阶段出发,得到变形阶段示意图,计算地层损失率,根据地层损失率得到轨道-路基-土体有限元模型,通过盾构隧道沉降系数确定模型为横向地层变形状态或纵向地层变形状态。再分析安全系数,得到盾构隧道下穿高速铁路桥梁承载力,选取冲击力、摩擦力以及负荷力,计算桥梁扰动性程度,建立盾构隧道下穿高速铁路桥梁段扰动性模型。最后根据扰动模型判断盾构隧道下穿高速铁路桥梁的扰动状况。该扰动模型具有很强的判断能力,对于盾构隧道下穿高速铁路状况分析有积极意义。  相似文献   

15.
结合郑州地铁1号线02合同段郑~中暗挖区间隧道施工,根据郑州市地质条件,详细介绍了在浅埋暗挖法地铁隧道内采用超前小导管注浆加固地层的施工工艺、施工方法等。为同类工程施工提供借鉴。  相似文献   

16.
长大隧道(洞)TBM施工总会遇到各种复杂地况。由于TBM施工地质依赖性很强,地层越复杂对TBM施工影响就越大。以中天山特长隧道TB880E型敞开式硬岩掘进机施工为例,从刀盘刀具改良,制定各种TBM操作预案、施工预案等角度出发,详细阐述TB880E在大埋深、节理发育花岗岩复杂地层下施工应对措施。为类似TBM设计与施工提供一定借鉴和参考。  相似文献   

17.
盾构隧道开挖面稳定研究进展   总被引:1,自引:0,他引:1  
在复杂地质条件下,盾构隧道开挖面失稳可导致地表沉降过大,从而破坏地表建(构)筑物及地下管线.通过微观破坏分析模型、塑性极限分析模型及楔形体极限平衡模型对盾构隧道开挖面稳定的理论研究现状进行了详述,并指出了今后应深入研究的几个重点:应考虑水土耦合作用;应考虑开挖面地层的变异性;应考虑掘进参数对开挖面稳定性的影响;应加强研究进出洞的切口压力控制.分析结果为完善盾构隧道开挖面稳定理论及指导现场实践提供了有益的方向.  相似文献   

18.
盾构隧道开挖面稳定研究进展   总被引:2,自引:0,他引:2  
在复杂地质条件下,盾构隧道开挖面失稳可导致地表沉降过大,从而破坏地表建(构)筑物及地下管线.通过微观破坏分析模型、塑性极限分析模型及楔形体极限平衡模型对盾构隧道开挖面稳定的理论研究现状进行了详述,并指出了今后应深入研究的几个重点:应考虑水土耦合作用;应考虑开挖面地层的变异性;应考虑掘进参数对开挖面稳定性的影响;应加强研究进出洞的切口压力控制.分析结果为完善盾构隧道开挖面稳定理论及指导现场实践提供了有益的方向.  相似文献   

19.
太原地铁2-1号线联络线盾构隧道穿越富水粉细砂地层,由于地层稳定性差、地下水位浅及隧道上方地层中存在电力排管,因而接收施工风险突出。为保证盾构能够顺利安全接收,通过对端头井地层加固、在封门处安装翻板+橡胶帘布的组合密封装置、安装固定接收钢托架、根据降水井中水位确定端头井中的灌水液面高度、调整盾构机出洞掘进参数,实现了盾构机水下安全接收。盾构接收过程中地表沉降监测结果证明了水下接收方案的有效性,为今后类似工程提供借鉴经验。  相似文献   

20.
富水软土地层地铁开挖地表沉降离心模型试验   总被引:2,自引:0,他引:2  
为了选择富水地层地铁隧道开挖的最佳施工方法,考虑流固耦合、时间和施工3种效应的综合作用,对在富水软土地层中开挖地铁隧道引起的地表沉降进行了离心模型试验,并对降水、动态降水和非降水3种施工方法进行了对比研究.结果表明,非降水施工是控制地表沉降最有效的方法.研究成果已成功地应用于深圳地铁工程中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号