首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Viability theory proposes geometric metaphors in addition to classical ordinary differential equation analysis. In this paper, advantages of applying viability theory to road safety domain are presented. The exact issue is to determine if, from an initial state of a vehicle/road/driver system, a soft controls strategy is compatible with a safe driving sequence. The case of a car negotiating a curve is considered. The application of the viability theory to this issue offers the advantage to avoid classical full computing of the system. Instead of that, it consists on verifying that the states and the controls belong to a subset called the viability kernel. The construction and the use of the viability kernel for a vehicle system dynamic is proposed by using support vector machines algorithm. Then, the applicability of this theory is demonstrated through experimental tests. This innovative application of the viability theory to vehicle dynamics with road safety concerns could benefit to robust embedded warning systems.  相似文献   

2.
ABSTRACT

In this paper, we describe how vehicle systems and the vehicle motion control are affected by automated driving on public roads. We describe the redundancy needed for a road vehicle to meet certain safety goals. The concept of system safety as well as system solutions to fault tolerant actuation of steering and braking and the associated fault tolerant power supply is described. Notably restriction of the operational domain in case of reduced capability of the driving automation system is discussed. Further we consider path tracking, state estimation of vehicle motion control required for automated driving as well as an example of a minimum risk manoeuver and redundant steering by means of differential braking. The steering by differential braking could offer heterogeneous or dissimilar redundancy that complements the redundancy of described fault tolerant steering systems for driving automation equipped vehicles. Finally, the important topic of verification of driving automation systems is addressed.  相似文献   

3.
In recent years the application of driver steering models has extended from the off-line simulation environment to autonomous vehicles research and the support of driver assistance systems. For these new environments there is a need for the model to be adaptive in real time, so the supporting vehicle systems can react to changes in the driver, their driving style, mood and skill. This paper provides a novel means to meet these needs by combining a simple driver model with a single-track vehicle handling model in a parameter estimating filter – in this case, an unscented Kalman filter. Although the steering model is simple, a motion simulator study shows it is capable of characterising a range of driving styles and may also indicate the level of skill of the driver. The resulting filter is also efficient – comfortably operating faster than real time – and it requires only steer and speed measurements from the vehicle in addition to the reference path. Adaptation of the steer model parameters is demonstrated along with robustness of the filter to errors in initial conditions, using data from five test drivers in vehicle tests carried out on the open road.

Abbreviations: ADAS: advanced driver assistance systems; CG: centre of gravity; CAN: controller area network; EKF: extended Kalman filter; GPS: global positioning system; UKF: unscented Kalman filter  相似文献   


4.
Modern software tools have enhanced modelling, analysis and simulation capabilities pertaining to control of dynamic systems. In this regard, in this paper a full vehicle model with flexible body is exposed by using MSC. ADAMS and MSC. NASTRAN. Indeed, one of the most significant vehicle dynamic controls is directional stability control. In this case, the vehicle dynamic control system (VDC) is used to improving the vehicle lateral and yaw motions in critical manoeuvres. In this paper, for design the VDC system, an optimal control strategy has been used for tracking the intended path with optimal energy. For better performance of VDC system, an anti-lock brake system (ABS) is designed as a lower layer of the control system for maintaining the tyre longitudinal slip in proper value. The performances of the controller on rigid and flexible models are illustrated, and the results show the differences between the control efforts for these models, which are related to the differences of dynamic behaviours of rigid and flexible vehicle dynamic models.  相似文献   

5.
根据当前智慧高速公路系统的发展历程,总结一些典型的车路协同系统逻辑与物理模型。在总结国内外智慧高速公路系统的整体架构之后,提出新一代智慧高速系统的总体架构-IntelliWay,包括智慧高速公路系统分层模块化架构、基于变耦合程度的智能分级和基于事件驱动的数据分发机制。同时,根据当前智慧高速公路系统的主流应用技术,总结车载高精度定位、高级驾驶辅助系统(Advanced Driver Assistance System, ADAS)与车载总线、路侧设备优化、异构网络融合、网络负载均衡、网络信息安全、多传感器融合与协同感知、以用户为中心的场景自适应信息发布、车辆群体协同自动驾驶、基于大数据与人工智能的交通态势预测、车道级主动交通管理、组件式应用服务开发等驱动智慧高速公路系统快速发展的新兴技术研究现状,然后基于以上关键技术的特点提出未来智慧高速公路系统应用的实施建议;分析广播式交通信息服务、主动交通管理、伴随式信息服务、自动驾驶专用道、车辆队列协同驾驶等智慧高速公路系统的典型应用场景,进行智慧高速系统的测评方法分析和相关案例分析。最后,系统性地分析和预测智慧高速系统存在的挑战及未来发展趋势,以...  相似文献   

6.
Comparison of All-Wheel Steerings in the System Driver-Vehicle   总被引:1,自引:0,他引:1  
Different load or tires and a drive on an ice-coated road can overcharge a driver to such an extend, that the result may be an accident. Therefore the aim of development is a self-acting compensation of the vehicle to different vehicle transfer behaviour (invariant vehicle behaviour).

The calculation of so called optimal characteristics shows, that only rear-wheel steering cannot realize this aim of development. Therefore an additional front-wheel angle, which is not influenced by the driver, is necessary. A transfer function can be calculated in order to get controlled steering of the rear wheels without the influence of load.

It is not possible to realize optimal characteristics, because the parameters of the vehicle are difficult to measure. Only an optimal diagnosis and control of driving condition realize a relief for the driver in every driving situation in order to avoid most of the accidents.

The often demanded sideslip angle compensation only worsens driving conditions on ice-coated roads. Therefore systems which identify the driving condition themselves have to be favoured in any case.  相似文献   

7.
Vehicle distance estimation using a mono-camera for FCW/AEB systems   总被引:2,自引:0,他引:2  
For robust vision-based forward collision warning (FCW) and autonomous emergency braking (AEB) systems, not only reliable detection performance including high detection rate and low false positives but also accurate measurement output of a target vehicle is required. Especially, in order to reduce false alarm or activation of FCW/AEB systems, the systems require the precise measurement output of a target object, such as position, velocity, acceleration, and time-to-collision (TTC). In this study, we developed a measurement estimation algorithm of a target vehicle using a monocular camera. This method estimates two cases of vehicle widths for a target vehicle by using the detected lane information and a pin-hole camera model. After that, the position, velocity, acceleration, and TTC of a target vehicle are estimated by using a Kalman filter for the each estimated vehicle width. To improve robustness, the both estimation results using the detected lane information and the pinhole camera model are fused. This estimation algorithm was evaluated and compared with the state-of-the-art technology. As a result, the proposed measurement output estimation method can improve the performance of the FCW/AEB systems.  相似文献   

8.
在对开路面弯道制动工况下分析了轮胎受力情况,提出一种基于转角预测前馈、路径偏移量反馈的车辆最佳滑移率动态调节方法,在SIMPACK中建立汽车多体模型,在MATLAB/Simulink中搭建控制系统,并进行了虚拟在环试验。试验结果显示,与传统ABS相比,所提出的控制方法可以显著改善车辆的侧偏位移、横摆角速度以及制动时方向的稳定性,保证了制动效能,使车辆侧向稳定性得到显著提高。  相似文献   

9.
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle systems for all possible dynamic situations, including the worst case scenarios such as rollover, spin-out and so on. Although the known NHTSA Sine with Dwell steering maneuvers have been applied for the vehicle performance assessment, they are not enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst case scenarios, including the existing severe steering maneuvers. This paper includes useful worst case scenarios based upon the existing worst case scenarios mentioned above and worst case evaluation for the vehicle dynamic controller in a simulation basis and UCC HILS. The only human steering angle was selected as a design parameter here and optimized to maximize the index function to be expressed in terms of both yaw rate and side slip angle. The obtained scenarios were enough to generate the worst case scenario to meet NHTSA worst case definition. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle dynamic control system.  相似文献   

10.
In this article, vehicle dynamics integrated control algorithm using an on-line non-linear optimization method is proposed for 4-wheel-distributed steering and 4-wheel-distributed traction/braking systems. The proposed distribution algorithm minimizes work load of each tire, which is controlled to become the same value. The global optimality of the convergent solution of the recursive algorithm can be proved by extension to convex problems. This implies that theoretical limited performance of vehicle dynamics integrated control is clarified. Furthermore, the effect of this vehicle dynamics control for the 4-wheel-distributed steering and 4-wheel-distributed traction/braking systems is demonstrated by simulation to compare with the combination of the various actuators.  相似文献   

11.
Nonlinear dynamic systems are well known to contain certain characteristic additional phenomena compared with linear systems. One example is the fact that nonlinear systems can have multiple stable solutions for one set of parameters. In that case, which one of the multiple stable solutions will be realised will depend on the initial conditions. From the domains of initial conditions which are domains of attraction, probabilities of occurrence of the stable solutions can be calculated. The described dynamical behaviour is studied in the present paper using two examples. To introduce the basic phenomena, the well-known academic Duffing oscillator with harmonic excitation is considered. Domains of attraction are shown for the two stable solutions and the probability of occurrence of the two solutions in the case of equally distributed initial conditions is calculated. The main example to be considered in this paper is the railway wheelset, which is known to show (depending on the nonlinearities in the model) a subcritical Hopf bifurcation depending on the vehicle speed. In that case a range of speeds exists, where a stable trivial solution and a stable limit cycle solution coexist in addition to an unstable limit cycle solution. Again domains of attraction of the two stable solutions are calculated and their dependence on the vehicle speed is shown. The probabilities of occurrence of the two stable solutions are calculated, where special interest is given to the probability of occurrence of the undesired limit cycle solution.  相似文献   

12.
Pareto optimisation of bogie suspension components is considered for a 50 degrees of freedom railway vehicle model to reduce wheel/rail contact wear and improve passenger ride comfort. Several operational scenarios including tracks with different curve radii ranging from very small radii up to straight tracks are considered for the analysis. In each case, the maximum admissible speed is applied to the vehicle. Design parameters are categorised into two levels and the wear/comfort Pareto optimisation is accordingly accomplished in a multistep manner to improve the computational efficiency. The genetic algorithm (GA) is employed to perform the multi-objective optimisation. Two suspension system configurations are considered, a symmetric and an asymmetric in which the primary or secondary suspension elements on the right- and left-hand sides of the vehicle are not the same. It is shown that the vehicle performance on curves can be significantly improved using the asymmetric suspension configuration. The Pareto-optimised values of the design parameters achieved here guarantee wear reduction and comfort improvement for railway vehicles and can also be utilised in developing the reference vehicle models for design of bogie active suspension systems.  相似文献   

13.
In order to present a useful method for designing active suspension of a vehicle, a linear full-car model is used in this investigation. In this model, the dampers of passive system are totally replaced by actuators. The actuators are controlled with optimal full state vector feedback. After determining feedback coefficients, the responses of active and passive systems were compared and it was found that performance of active system is much superior. It is desired that, changes in vehicle parameters would not affect the system's performance and hence should not violate its optimality. In other words, the system should behave adaptively using Model Reference Adaptive Control. The optimally controlled active suspension was used as a model for the active suspension of vehicle. In this way, the suspension of vehicle is controlled in such a way that its output approaches to that of the optimal active model. Thus the suspension should behave just like the optimal one.  相似文献   

14.
The longitudinal and lateral vehicle control techniques have been widely used in several active driver assistance systems. The adaptive cruise control, lane keeping assistant control, vehicle platooning and stop-and-go control are typical examples of the most important applications. In this study, a novel path planning method is proposed considering the driving environment such as road shape, ego vehicle and surrounding vehicles’ movement. The relative distance and velocity between the ego vehicle and surrounding vehicles are identified with respect to the predicted lane shape in front of the ego vehicle. Based on the identified information, the road shape and surrounding vehicles are mapped into the intensity image and the desired vector for the ego vehicle’s movement is determined by the maximum intensity density tracing method. The desired vehicle path is followed by the acceleration/deceleration control and the steering assist control, respectively. In order to evaluate the performance of the proposed system, simulations are conducted and compared with ACC systems.  相似文献   

15.
An important development of the steering systems in general is active steering systems like active front steering and steer-by-wire systems. In this paper the current functional possibilities in application of active steering systems are explored. A new approach and additional functionalities are presented that can be implemented to the active steering systems without additional hardware such as new sensors and electronic control units. Commercial active steering systems are controlling the steering angle depending on the driving situation only. This paper introduce methods for enhancing active steering system functionalities depending not only on the driving situation but also vehicle parameters like vehicle mass, tyre and road condition. In this regard, adaptation of the steering ratio as a function of above mentioned vehicle parameters is presented with examples. With some selected vehicle parameter changes, the reduction of the undesired influences on vehicle dynamics of these parameter changes has been demonstrated theoretically with simulations and with real-time driving measurements.  相似文献   

16.
获取营运车辆的时空大数据,识别车辆运行区间、车辆运营时长、车辆运行车速等关键参数,对于深入挖掘车辆位置的空间、时间分布特征具有重要意义.在分析卫星定位系统的数据特点及相关定位技术的基础上,从计算机、地理学以及交通科学3个不同领域,对位置时空数据及其特点展开了比较分析.以典型营运车辆数据——基于出租车轨迹的出行分布研究以及联网联控"两客一危"分析为例,对基于卫星定位系统的典型营运车辆时空特征分析的理论、方法及关键技术进行综述.   相似文献   

17.
范小彬  邓攀 《天津汽车》2013,(12):47-50
为提高汽车主动安全系统自适应控制性能,需要对轮胎/路面附着系数进行精确的识别或估算。鉴于附着系数估计的复杂性,文章综述了目前路面附着系数估算中的汽车动力学建模和轮胎/路面摩擦模型建模,重点讨论了轮胎/路面附着系数识别算法中传感器的直接检测估计法,以及基于车辆动力学、回正力矩和状态观测器等动力学模型的估计算法,并对各估算方法存在的问题与发展趋势等进行了分析。对开发汽车主动安全电控系统和提高汽车产业核心竞争力具有重要意义。  相似文献   

18.
This paper introduces the active third-axle system as an innovative vehicle dynamic control method. This method can be applicable for different kinds of three-axle vehicles such as buses, trucks, or even three-axle passenger cars. In this system, an actuator on the middle axle actively applies an independent force on the suspension to improve the handling characteristics, and hence, its technology is similar to slow-active suspension systems. This system can change the inherent vehicle dynamic characteristics, such as under/over steering behaviour, in the linear handling region, as well as vehicle stability in the nonlinear, limit handling region. In this paper, our main focus is to show the potential capabilities of this method in enhancing vehicle dynamic performance. For this purpose, as the first step, the proposed method in both linear and nonlinear vehicle handling regions is studied mathematically. Next, a comprehensive, nonlinear, 10 degrees of freedom vehicle model with a fuzzy control strategy is used to evaluate the effectiveness of this system. The dynamic behaviour of a vehicle, when either uncontrolled or equipped with the active third axle is then compared. Simulation results show that this active system can be considered as an innovative method for vehicle dynamic control.  相似文献   

19.
In the dynamic simulation of vehicle straight line motion, a vehicle model usually drifts from its intended straight path even in the case of no external input. This is particularly true when a tire model based on experimental data is used. The purpose of this paper is to provide an enhancement of a basic understanding of a tire/vehicle system behavior in the straight line motion and to identify the effect of the tire on that motion. Through the analysis of a two degrees of freedom vehicle model, tire characteristic which causes a lateral drift in the straight line motion is identified. Then the results are confirmed from vehicle test and the simulations with a more complex full-car model.  相似文献   

20.
As growing demand of vehicle safety system, especially regarding intelligent transport systems (ITS), automotive manufacturers are focusing more on driving safety and efficient transportation for vehicle users. Many safety systems have been launched in the market recently so, it is important to evaluate the vehicle safety systems and ITS. The ITS based intelligent vehicle test bed was constructed to meet the growing demand of test and verification for such ADAS and ITS systems. First, this paper describes in detail concept of the test-bed. This test-bed is carefully designed to meet the requirements of ISO/TC204 standards. In order to verify the design of the test-bed, virtual test with driving siulator was processed on a virtual test tracks. This test-bed will be used to conduct testing on various ITS and ADAS technologies, such as adaptive cruise control (ACC), lane departure warning system (LDWS), cooperative intersection warning system as well as rollover stability control (RSC) and electronic stability control (ESC), etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号