首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
青藏铁路冻土路基热棒应用效果试验研究   总被引:4,自引:0,他引:4  
通过青藏铁路沿线典型冻土路段热棒试验路基和对比路基的地温及变形现场监测,研究热棒对多年冻土路基的保护效果。通过对埋置在正线试验路基左侧不同规格热棒周围地温的监测,研究热棒构造对路基降温效果的影响。试验结果表明,热棒显著抬升路基下部多年冻土的天然上限,其最大平均抬升值达1.66 m;斜插方式埋置热棒能使最大融化深度曲线更快地趋于平缓,达到对路基下部多年冻土的整体保护;热棒路基的累计变形远小于未设置热棒的对比路基;热棒的产冷功率越大,其降温效果越好,降温范围也越大。  相似文献   

2.
研究目的:为了及时掌握热棒路基的工程特性,把握热棒的降温效果,以便评价青藏铁路多年冻土区热棒路基的工程稳定性,本文选择青藏铁路一处热棒路基为研究对象,对该断面天然孔及左、右路肩孔2006~2009年的地温进行分析,研究热棒路基的降温效果.研究结论:通过分析得出0~1.5m深度范围内地温受气温影响变化较大,路肩孔1.5 ~10.0 m之间由于热棒的主动降温作用,地温呈逐年下降的趋势,并且在青藏铁路运营后的前2~3年内地温下降明显,表明热棒能快速降低地温,保护多年冻土.  相似文献   

3.
青藏铁路高填方路基对下伏多年冻土热状况的影响   总被引:11,自引:0,他引:11  
基于青藏铁路北麓河试验段两个监测断面的地温监测资料 ,分析了修筑高路基后下伏土层的热状况变化特征。结果表明 ,修筑高路基后 ,多年冻土上限有所抬升 ,而下伏土层地温明显升高。多年冻土上限的抬升主要是由于高路基的热阻效应导致上限附近土层温度变幅急剧减小而形成的。高路基的修筑会引起路基阴阳面热交换状态的明显差异 ,路基阳面边坡是最强烈的吸热面 ,而路基阴面边坡表现为放热效应 ,由此会形成下伏多年冻土融化状态的不同  相似文献   

4.
牙林线多年冻土区热棒试验效果分析   总被引:1,自引:0,他引:1  
既有铁路牙林线多年冻土区试验工程是为研究青藏线多年冻土修建的,用于整治大兴安岭多年冻土路基病害。热棒作为一种主动保护多年冻土的有效措施,在多年冻土的工程实践中得到了广泛的应用。文章仅就热棒的工作状况进行初步分析,虽然观测时间较短,但目前数据显示,该措施对降低基底地温,保护冻土效果显著,可在多年冻土区应用。  相似文献   

5.
刘新福 《铁道建筑》2012,(5):123-125
本文分析了青藏铁路沿线高气温和高地温典型地段在三个阶段的地温和路基变形特征。第一阶段(工程热扰动阶段),热扰动影响显著且出现了较大的热融变形;第二阶段(热扰动弱化阶段),多年冻土经过1~2个冻融循环以后,路基结构的散热降温效果开始显现,多年冻土上限开始稳定上升;第三阶段(新的热力平衡形成阶段),多年冻土上限普遍抬升,冻土得到有效保护,浅层土体含水量和密实度成为主要影响因素。  相似文献   

6.
结合片石气冷加碎石护坡组合路基、片石气冷路基、碎石护坡路基、热棒路基及普通素土路基等结构形式地温和变形的现场监测数据,对青藏铁路多年冻土区路基人为上限的变化规律、形态特点和类型进行分析。结果表明,青藏铁路多年冻土区路基的人为上限形态类型为人为上限升入路基本体的A型和人为上限升入基底土层中的B型,且路基人为上限的变化已基本趋于稳定;随着时间的推移,路基的沉降也逐渐趋稳;路基累计沉降量与路基高度成正比而与人为上限的上升值成反比。  相似文献   

7.
通过对青藏铁路多年冻土区长期监测系统多年来的大量实测数据进行分析,研究了青藏铁路路基下多年冻土演化特征及规律。研究结果表明:青藏铁路沿线气温逐年升高,降水量、冻结指数和融化指数逐年增大,暖冬现象明显,地表温度年升高率达到0.06℃/年;沿线多年冻土区2007—2013年间冻土天然上限下移的达91%,不同深度处的地温整体处于升温状态;青藏铁路路基下多年冻土也发生了升温退化,在2007年冻土人工上限相对原天然上限均抬升的占81%,路基下多年冻土退化明显滞后于天然场地;片石路基、热棒路基等主动降温措施效果明显,保证了青藏铁路多年冻土路基工程的稳定。  相似文献   

8.
青藏铁路多年冻土区路基热防护工程效果分析   总被引:2,自引:1,他引:1  
研究目的:我国青藏铁路的修建充分考虑了对多年冻土的保护,在路基热防护措施中采用了热棒路基,碎(片)石护坡、块石护坡、片石气冷等关键技术。文章对青藏铁路各种路基新结构的地温进行研究,通过地温值计算得出最大融化深度,从各年最大融化深度的对比分析,研究这些措施对保护多年冻土,保证线路安全的作用。研究结论:通过对实测数据的分析得出热防护措施能使路肩下最大融化深度减小。路基新结构的应用对保护多年冻土、降低地温、稳定路基是有效的。  相似文献   

9.
确保多年冻土地基的长期热稳定仍然是当前冻土学科研究的重点和难点。科研人员长期致力于冻土工程关键技术的研究,研发了维护多年冻土地基热稳定的太阳能制冷技术及太阳能制冷装置,以太阳能热能为动力,实现制冷装置不分季节的全时段工作,特别是在暖季,能够有效阻止环境温度对多年冻土地基的热侵蚀。现场试验研究表明:采用该技术及制冷装置后,年均地温较天然年均地温有较大幅度的降低,降温幅度为-2.23~-3.9℃,且呈逐年增大的趋势;多年冻土的上限埋深由2.0 m抬升至1.5 m;季节活动层中的制冷影响半径由0.76m扩大至2.56m,多年冻土层中的制冷影响半径最大达到了3.95 m;实际制冷量为所需估算制冷量的2.27倍。总体上,采用维护冻土地基热稳定的太阳能制冷技术及其制冷装置后,季节活动层和多年冻土层的温度大幅度降低,上限埋深明显抬升,有效地维护了多年冻土的热稳定,具有较大的研究价值和应用前景。  相似文献   

10.
全球气温升高条件下热棒工作状态及效率的计算   总被引:1,自引:0,他引:1  
热棒作为一种液汽两相对流换热装置 ,具有无能耗、高效率地降低棒周地温的特点。热棒对降低基底地温、增加地基冷储量、保护多年冻土具有较明显的效果。文章以清水河试验段天然地面埋设的单根热棒为例 ,利用计算机数值模拟计算了未来 5 0年气温不同升温幅度下热棒的工作状态及效率。计算结果表明 ,未来 5 0年 ,即使全球气温升高 2 6℃ ,热棒仍能正常工作 ,其传热影响范围在 0 5m范围内。  相似文献   

11.
青藏铁路多年冻土区热棒路基温度场三维非线性分析   总被引:7,自引:0,他引:7  
盛煜  温智  马巍  吴基春 《铁道学报》2006,28(1):125-130
高温高含冰量的多年冻土地段,极易受外部条件的扰动而发生变化。针对此类冻土的特征,提出了热棒路基。根据带相变热传导有限元方法,对普通路基、热棒路基在未来50年青藏铁路沿线气温上升1.0℃情况下的温度场进行了预报分析和比较。计算结果表明,在年平均气温为-3.5℃或年平均地温为-1℃的地区,在青藏铁路50年的使用期内,普通路基在气温升高条件下路基下伏冻土都将发生融化,路基将会产生较大融沉变形,不能保证青藏铁路路基的稳定性。热棒路基具有主动冷却的作用,可以更好的保护冻土。路基计算结构表明,在未来50年气温上升1.0℃的条件下,在年平均气温为-3.5℃或地表温度为-1.0℃的青藏铁路沿线多年冻土地区,热棒路基可以抵消气候变暖的影响,可以保证路基下伏冻土不发生融化,从而可以保证路基的稳定性。  相似文献   

12.
针对多年冻土区普通热棒在暖季难以维护路基热稳定性的技术缺陷,首次将半导体制冷技术应用于维护多年冻土地基热稳定性。在风火山多年冻土区试验场地开展了半导体与普通热棒制冷技术制冷效果的对比试验,分析2016年12月和2017年4—9月间天然地温、热棒、半导体制冷装置在0~6.0 m深度内的温度变化情况。研究结果表明:半导体制冷装置侧壁温度较天然地温在寒季低2.21~5.48℃,在暖季低0.81~3.80℃;半导体制冷装置较热棒在寒季低0.13~0.92℃,在暖季低1.16~2.06℃。半导体制冷装置比普通热棒能更有效地降低地层温度,减小冻融层厚度,增加地基冷储量,有效维护地基热稳定性。  相似文献   

13.
青藏高原多年冻土区热棒路基设计计算   总被引:3,自引:1,他引:2  
结合青藏铁路试验工程,在分析热棒路基热周转特性的基础上,建立热棒路基热工计算模型,阐述热棒路基的设计计算过程,讨论设计计算中基本参数的选取,热棒产冷量的计算,产冷量与间距、蒸发段长度、散热面积的关系,安全系数的选取。青藏铁路多年冻土区清水河试验段热棒路基的设计计算结果表明:采用直径76 mm、散热面积3.27 m2、蒸发段长度5 m的热棒,能够很好地起到保护多年冻土的作用,其产冷量达1 900 MJ。热棒的合理纵向间距应在3.5~4.0 m;安全系数在1.1~1.2。相比之下,散热面积、蒸发段长度对产冷量的影响较明显,热棒直径的影响较弱。  相似文献   

14.
为了解决青藏铁路多年冻土地段路基的热融冻胀问题,确保多年冻土地段路基的稳定,部分冻土地段路基应用了热棒技术。文章介绍热棒的工作原理、施工方法及施工后路基沉降的观测,实践证明采用热棒技术对多年冻土路基的地基稳定有较好的效果。  相似文献   

15.
青藏铁路多年冻土区热棒路基的设计计算   总被引:2,自引:0,他引:2  
研究目的:热棒作为一种主动保护多年冻土的措施,已在青藏铁路多年冻土区路基工程中得到广泛应用。但是,由于缺乏现场测试资料,多年冻土区热棒路基的设计计算始终是一个难题。研究方法:根据青藏铁路多年冻土区清水河试验段热棒路基的现场观测资料,计算了2002--2003年寒季热棒的有效传热影响范围、最大传热影响范围和热棒的产冷量以及传热影响范围内热棒蒸发段土体温度的降低值,并根据计算结果提出了热棒设计所应采用的纵向间距。研究结果:(1)清水河试验段天然地面热棒的有效传热影响范围为1.50m,最大传热影响范围为2.16m;(2)寒季热棒工作期间的总产冷量为1149MJ;(3)寒季最大传热影响范围内热棒蒸发段对应土体温度的平均降低值为0.95℃。研究结论:为保证热棒传热影响范围内土体温度有较大的降低值,工程设计时热棒的纵向间距以3.0m为宜。  相似文献   

16.
热棒技术在青藏铁路试验段中的应用   总被引:1,自引:0,他引:1  
在多年冻土地区,采用热棒处理地基的技术具有广阔的应用前景.为了获得热棒的技术参数,指导工程设计,在青藏铁路清水河试验段,安多试验段布置了热棒试验工程.本文介绍了试验段采用热棒所处理的不良地质类型、热棒的施工工艺、研究内容.  相似文献   

17.
为解决多年冻土区冻融循环及全球气温升高引起的边坡失稳问题,基于"主动冷却"保护冻土的理念,结合框架锚杆和热棒制冷技术,提出一种既可主动降温、又能锚固支挡、还能减轻冻胀破坏,且适用于多年冻土边坡的新型支护结构,并阐述其技术原理;提出极限承载力和热量平衡两个设计控制指标,给出热-力共同控制的设计计算方法。将该结构和相应的计算方法应用于工程实例,计算结果表明:所提出结构不仅能防止多年冻土边坡上限退化,甚至能抬升上限,进而提高冻土边坡的稳定性;给出的计算方法能够较为准确描述结构的工作机理,为该结构的设计提供理论依据和参考。  相似文献   

18.
旅客朋友们:当您乘坐列车在青藏铁路线上飞驰,奔向神往已久的西藏拉萨时,您可曾知道?青藏铁路从西大滩至安多550公里的铁路都是修筑在多年冻土土层之上的。列车来到这一区段,稍加留意就会看到铁路路基两侧不时出现一段段整齐地排列着带有螺旋翅片的钢管,这可不是什么普通的钢管,而是应对青藏铁路多年冻土禁区的一种"神秘武器"——热棒。  相似文献   

19.
冻土铁路涵洞施工对地基土地温的影响   总被引:3,自引:0,他引:3  
通过对青藏铁路沱沱河试验段2座试验涵洞进行地温现场监测和观测数据的分析,研究适合青藏高原特殊施工环境的涵洞施工工艺、最佳施工季节、施工对多年冻土的影响以及沿涵洞轴向多年冻土上限的变化特征。研究表明:涵洞施工选择在寒季且选用预制基础,对冻土的热扰动较小;受涵洞施工热扰动、路基填土储热以及涵洞过水等的影响,建涵初期涵洞下多年冻土地温升高,且有部分融化现象;由于涵洞的通风与遮阳作用,涵洞下多年冻土近地表地温的变化特征与天然地面下有明显的不同,涵内浅层地温对气温的响应比天然地面相应深度迟缓,浅层地温年波动幅度逐渐减小,尤其在夏季正温波动幅度明显减小,同时沿涵洞轴向不同部位地温变化特征也有所不同,涵身地基地温正温波动幅度小于进出口,而负温波动幅度大于进出口,与此相应,涵身冻土的人为上限一般也高于洞口,说明路基和涵洞具有保温隔热的作用。  相似文献   

20.
多年冻土区铁路运营初期路基工程状态研究   总被引:2,自引:0,他引:2  
研究目的:由于温度和水分的介入以及运营条件的诱发,使运营期间冻土路基工程状态的研究变得更为复杂。通过对运营初期多年冻土路基工程状态的现场调查和监测,从路基变形、地温变化、水热环境三个方面研究运营初期多年冻土区路基的工程状态,提出路基裂缝病害的解决措施,为铁路安全运营和养护工作服务。研究结论:(1)多年冻土区路基工程在运营初期,路基变形总体呈衰减趋势,已经趋于稳定。(2)路基大多数断面多年冻土上限上升和上限形态趋于稳定,地基冷储量增加,多年冻土上限上升是在降低土体温度的基础上实现的。(3)路基工程状态变化首先是地温场的变化改变了发生变形的土层位置和厚度,同时地温场的不对称造成变形差异,诱发裂缝发生,水热环境的变化导致裂缝发展。(4)采用热学不对称的路基结构,能减缓上限形态的不对称性,从而减小路基横向差异变形,抑制路基工程裂缝的发生和发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号