首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
纯电动汽车用磷酸铁锂电池的模型参数分析   总被引:2,自引:0,他引:2  
鉴于纯电动汽车用磷酸铁锂电池在不同荷电状态下的电池特性差异较大,传统参数辨识方法得到的电池模型参数拟合精度较低.本文采用电化学阻抗谱来分析等效电路模型参数,以研究电池的电压特性和动态功率特性,通过综合分析实际充放电条件的主要特征来提取电池典型的参数辨识工况,并利用粒子群优化算法分析模型参数.在不同温度和使用区间的验证表明该方法的精度较高,为磷酸铁锂电池的进一步研究提供依据.  相似文献   

2.
基于实车电池复杂的运行数据,本文使用增量容量分析方法提取IC峰特征作为电池充电片段的有效特征,使用t-SNE非线性降维方法处理IC峰特征,消除多维特征冗余性,以解决实车数据难以提取可靠特征的问题。另外构建支持向量回归模型,实现对电池健康状态的估计。结果表明,本文使用的增量容量曲线峰特征能有效表征电池健康状态衰退变化;对实车数据的平滑、降噪方法可以较好地提升训练数据质量;基于t-SNE降维特征的SVR模型提升了对电池健康状态的估计精度,保证了有限样本数据集上实现准确估计。  相似文献   

3.
为更好地解决电动汽车动力电池健康状态(SOH)在线估计问题,减少实车采集数据中的冗余样本,改善运行工况不稳定导致的特征丢失,提升实车电池SOH估计的精度,提出一种基于增量容量分析方法(ICA)提取特征和动态时间规整(DTW)优化特征样本的SOH估计方法。首先对实车电池充电循环数据应用增量容量分析提取电池IC曲线,以曲线峰高度等形状特征作为健康因子。采用动态时间规整作相似性判据,基于IC曲线形状计算电池充电循环样本的相似度,保留与基准充电循环相似的充电循环数据,优化训练样本,最后采用全连接神经网络(MLP)模型进行SOH估计。以实车运行电池数据进行对比实验,结果表明该方法可明显改善训练样本质量,提升电池SOH估计精度。  相似文献   

4.
《汽车工程》2021,43(9)
鉴于现有电动汽车电池健康状态(SOH)预测方案多基于条件有限实验室的实验数据,且存在单指标预测精度低等问题,基于实车运行数据分析并提取电池健康状态因子,以电池容量、内阻和单体一致性为特征,构建机器学习模型,实现电池SOH多指标的准确预测;针对实车数据区间不完整、片段间隔大等问题,提出自适应状态估计法;利用非支配排序遗传算法(NSGA-II)进行精度与效率的多目标优化,获得最佳电压区间,提高电池容量的变区间估计精度。结果表明,该方法可有效实现基于实车数据的电池SOH准确预测,采用5-fold交叉验证计算测试集最大平均绝对误差小于2%。  相似文献   

5.
锂离子电池的容量与剩余使用寿命预测对提高其安全性具有重要的意义。该文提出一种基于改进粒子群滤波(PF)算法与特征电压关联模型的锂离子电池容量估计与剩余使用寿命预测方法。提取放电曲线中的特征电压,建立特征电压-循环次数及特征电压-容量2个关联模型;应用改进PF算法对2个关联模型的参数进行辨识,以实现容量的在线估计与剩余寿命的离线预测;利用此方法通过拟合样本电池老化数据来优化建议概率密度的初始值,提高模型参数辨识的准确性以提高所建立关联模型的精度。结果表明:所提出的方法容量估计误差能保持在3%以内,寿命预测误差保持在5%以内。  相似文献   

6.
基于电化学阻抗谱特性,对Randles等效电路模型引入复参数电感元件、复参数电容元件和常相位元件,建立磷酸铁锂电池的等效电路修正模型,通过对实测阻抗谱的拟合以及模拟退火算法,辨识修正模型中的参数。拟合结果表明,修正模型相比Randles等效电路模型精度提高近4%,能够更好地模拟电池伏安动态特性,为电池模型在电池管理系统上的进一步应用提供理论基础。  相似文献   

7.
梁海强  何洪文  代康伟  庞博  王鹏 《汽车工程》2023,(5):825-835+844
为提升实际应用中锂离子动力电池寿命预测精度,本文中提出一种融合经验老化模型和电池机理模型的电池寿命预测方法。该方法以基于经验老化模型SOH预测值作为卡尔曼算法的先验估计,以基于机理模型估计电池未来容量衰减量进而预测得到的SOH作为卡尔曼算法的后验修正,从而实现对锂离子电池寿命的准确预测。基于电芯试验数据的动力电池寿命预测算法验证结果表明,锂离子动力电池剩余寿命预测误差≤5.83%、基于实车数据的锂离子动力电池的剩余寿命预测误差≤8.12%,取得了良好的预测效果,丰富了锂离子动力电池寿命预测的方法。  相似文献   

8.
传统的电池模型参数和荷电状态SOC联合估计算法通常采用双层架构:一个递推估计器辨识所有模型参数,另一个递推估计器推测SOC。由于待辨识参数较多,该算法往往存在调参麻烦、鲁棒性不高等问题。为解决该问题,本文中提出一种基于3层架构的阻抗参数和SOC在线联合估计算法,将欧姆内阻和极化参数分开辨识,以降低问题的复杂度。另外,通过分析1阶RC模型建模误差的动态特征,引入一个基于1阶惯性环节的集总误差模型,提高了1阶RC模型的精度。两组实车运行工况数据的验证结果表明:所提出算法的鲁棒性比传统算法明显提高,精度也有所提升;25和-20℃工况下的SOC估计误差能分别快速收敛到2%和3%以内。同时,敏感性分析结果表明,该算法对初始误差也具有较好的鲁棒性。  相似文献   

9.
轴频提取的前提是对信号频率有较高的估计精度,采用传统的FFT谱估计技术来获得高精度信号频率需要增加计算量;基于自回归-滑动平均ARMA模型的谱估计技术是一种现代高分辨谱估计技术,在小样本、低信噪比状态下具有很好的频率估计性能.文章将这种方法实用于对水下目标辐射噪声谐波频率进行估计,用仿真和实验分析了该方法的性能.  相似文献   

10.
鉴于采用传统粒子滤波算法来预测锂离子电池剩余使用寿命(RUL)过程中,存在粒子多样性丧失现象而导致RUL预测精度较低的问题,引入线性优化重采样思想,建立了基于线性优化重采样粒子滤波(LORPF)的电池RUL预测方法。该方法以双指数模型作为电池老化模型,通过LORPF算法对模型参数进行迭代更新,实现电池RUL预测并给出预测结果的不确定性表达,最后使用美国国家航空航天局PCoE研究中心的电池数据和自主搭建实验平台的电池数据对所提方法与传统PF方法进行对比验证,结果表明该方法有效提高了RUL预测精度,其误差小于5%。  相似文献   

11.
为提高电动汽车动力电池SOC的估计精度,本文中对锂离子电池模型与参数辨识算法、自适应无迹卡尔曼滤波(AUKF)算法和基于电池模型融合的SOC估计算法进行研究。建立了具有明确物理意义的电池电路模型,采用基于遗传算法(GA)的模型参数辨识算法,设计了基于AUKF的电池SOC估计方法,并基于贝叶斯信息准则,提出了电池模型融合方法,实现了基于模型融合与AUKF的电池SOC估计。仿真结果验证了该方法具有较高的精度。  相似文献   

12.
以现有电池阻抗模型为基础,以电工学为理论依据,建立锂电池阻抗模型。通过电化学阻抗谱对锂电池的阻抗特性进行分析,得到锂电池阻抗模型中各参数在充电和放电过程中随电池荷电状态(State of Charge,SOC)的变化规律。为验证得到的锂电池阻抗模型中各等效元件的参数值,采用暂态边界电压测试法对锂电池在充放电过程中的电压瞬态变化关系进行分析,得到模型中欧姆极化和电化学极化中等效元件参数值的误差均在12%以内。  相似文献   

13.
为提高动力锂电池在使用过程中剩余电量的估算精度,以满足电池管理系统对电池监控的要求,提出一种适用于不同温度的动力锂电池SOC估计方法。首先通过分析对比从控制算法模型中选择了2阶等效电路模型,并依据多温度点实验结果进行电池参数拟合,建立基于温度的电池参数模型。接着根据改进的扩展卡尔曼滤波算法,建立SOC估算模型。最后按照DST和FUDS循环进行快速控制原型仿真,验证该算法对不同温度的鲁棒性。结果表明,所制定的SOC估计算法,既能抑制电流噪声的干扰,又能在初始SOC值有较大误差的情况下,使估算值迅速收敛于真实值,在整个估算过程中误差保持在0.04以内。  相似文献   

14.
当前电动汽车车载电池均采用到锂电池,其电化学阻抗谱(EIS,Electrochemical Impedance Spectroscopy)是目前一种相对新颖的电化学测量技术。EIS能够为电动汽车锂电池组的电化学系统施加一个频率不同、振幅偏小且交流正弦的电势波,对于测量交流电势与电流信号阻抗比值方面具有良效。文章中简单分析了锂离子电池的电化学阻抗谱相关理论基础内容,然后对锂电池中电池电极电化学的阻抗谱特征进行了深度分析。  相似文献   

15.
锂离子动力电池剩余使用寿命(RUL)预测对于认识全生命周期电动汽车的安全和可靠性、改善电池管理系统的设计具有重要意义。通常基于深度学习的时序预测方法,本质上是一个递推的过程,每一次预测的误差会随预测次数增加而累积,难以保证预测精度和预测效率。基于深度学习序列预测和误差分析理论,建立一种ARIMA-EDLSTM融合模型的锂电池RUL预测方法,使用编码器-解码器(ED)框架改进长短时记忆神经网络模型(LSTM)构建从序列到序列预测的EDLSTM模型,并融合ARIMA模型预测误差趋势,进而修正最终预测结果。理论分析和实车采集数据验证表明,该方法在预测比例超过历史数据总量35%的情况下,仍然能较好地拟合实车SOH衰退曲线,有效提高锂电池剩余使用寿命的预测精度。  相似文献   

16.
毕贵红  谢旭  蔡子龙  骆钊  陈臣鹏  赵鑫 《汽车工程》2022,(6):868-877+885
锂离子电池在老化过程中,其内部呈现非线性的复杂变化,因此直接使用动态条件下的锂离子电池运行时段的数据(电流、电压和温度)进行电池健康状态的实时估计是一个具有挑战性的问题。本文中选取锂离子电池随机充放电数据,对动态数据的部分片段进行时频特征提取,组成时频特征矩阵作为输入,构建级联式卷积神经网络和门控循环单元容量估计模型,对输入数据进行内在特征提取,并进一步挖掘各时间序列中的相关特征,实现锂离子电池动态条件下的容量估计。利用美国航空航天局锂离子电池随机使用数据集进行实验验证的结果表明,该方法能在仅已知电池的额定容量的情况下,准确完成锂离子电池容量估计。最后,本文还分析了模型超参数设置、原始数据时序长度、网络输入和模型结构对容量估计精度的影响。  相似文献   

17.
利用探测车数据进行路段行程时间估计面临着两类误差:采样误差和非采样误差,从而导致估计结果精度不高和可靠性差。在回顾已有估计方法的基础上,有针对性地引入了自适应式卡尔曼滤波,建立了相应的状态方程和观测方程,利用相似时间特征的历史数据标定了状态转移系数,并对滤波进行了求解。以实际数据对估计方法进行了验证,平均相对误差为13.13%。研究表明,自适应式卡尔曼滤波能够应用到基于探测车数据的路段行程时间估计中来,并具有估计精度高、收敛速度快、参数少、对初值不敏感等优点。  相似文献   

18.
为了实现锂离子电池荷电状态(SOC)的精确估计,建立锂离子电池的二阶等效模型,提出基于加权自适应递推最小二乘法与扩展卡尔曼滤波(ARWEKF)的锂离子电池SOC估计方法。通过静态和动态工况下的仿真和试验进行验证,结果表明:ARWEKF算法的估计精度高于扩展卡尔曼滤波(EKF)算法和基于遗忘因子的递推最小二乘法(FFRLS),其模拟仿真的最大绝对误差为1.36%,均方根误差为0.42%,静态工况试验下的AE为0.67%,RMSE为0.21%,动态工况试验下的AE为1.86%,RMSE为0.56%。  相似文献   

19.
提出了基于容量增量变化量曲线的电池健康状态估计新方法,该曲线具有随电池老化平移不明显的特点,并有利于特征参数的确定和提取。利用随机森林方法分析该曲线上各个函数值的重要性,根据重要性筛选出曲线上可以作为表征参数的函数值,并使用神经网络建立起表征参数与健康状态的映射关系。利用马里兰大学老化数据验证该方法的平均绝对百分比误差为0.77%,健康状态估计值误差基本控制在2%以内,具有较高的精度。  相似文献   

20.
针对传统动力电池的SOC估计方法的不足,采用BP神经网络对SOC进行预测。通过编写Matlab程序对BP神经网络进行了训练,并用所建BP神经网络模型对电池性能进行预测,获得电池SOC预测值,最大误差小于0.5%,结果满足精度要求,从而验证了所建BP神经网络能够有效的预测蓄电池电压和SOC之间的映射关系。对提高动力电池的能量效率,延长电池的使用寿命具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号