首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Two trends in the United States—growth in bicycling and enthusiasm for complete streets—suggest a need to understand how various roadway users view roadway designs meant to accommodate multiple modes. While many studies have examined bicyclists’ roadway design preferences, there has been little investigation into the opinions of non-bicyclists who might bicycle in the future. Additionally, little research has explored the preferences of the motorists who share roads with cyclists—despite the fact that motorists compose the vast majority of roadway users in the United States and similarly developed countries.This paper presents results from an internet survey examining perceived comfort while driving and bicycling on various roadways among 265 non-bicycling drivers, bicycling drivers, and non-driving bicyclists in the San Francisco Bay Area. Analysis of variance tests revealed that both drivers and bicyclists are more comfortable on roadways with separated bicycling facilities than those with shared space. In particular, roadways with barrier-separated bicycle lanes were the most popular among all groups, regardless of bicycling frequency. Striped bicycle lanes, a common treatment in the United States, received mixed reviews: a majority of the sample believed that they benefit cyclists and drivers through predictability and legitimacy on the roadway, but the lanes were rated significantly less comfortable than barrier-separated treatments—particularly among potential bicyclists.These findings corroborate research on bicyclists’ preferences for roadway design and contribute a new understanding of motorists’ preferences. They also support the U.S. Federal Highway Administration’s efforts to encourage greater accommodation of bicyclists on urban streets.  相似文献   

2.
In this paper, a model predictive control approach for improving the efficiency of bicycling as part of intermodal transportation systems is proposed. Considering a dedicated bicycle lanes infrastructure, the focus in this paper is to optimize the dynamic interaction between bicycles and vehicles at the multimodal urban traffic intersections. In the proposed approach, a dynamic model for the flows, queues, and number of both vehicles and bicycles is explicitly incorporated in the controller. For obtaining a good trade-off between the total time spent by the cyclists and by the drivers, a Pareto analysis is proposed to adjust the objective function of the MPC controller. Simulation results for a two-intersections urban traffic network are presented and the controller is analyzed considering different methods of including in the MPC controller the inflow demands of both vehicles and bicycles.  相似文献   

3.
Given the potential benefits of bicycling to the environment, the economy, and public health, many U.S. cities have set ambitious goals for increasing the bicycle share of commute trips. The Transtheoretical Model of Behavior Change, which seeks to describe how positive and permanent change can be fostered in individuals, may shed light on how cities can most effectively increase bicycle commuting. We use the model’s “stages of change” framework to explore the potential for increased bicycle commuting to the UC Davis campus in Davis, California. Our analysis uses data from the 2012 to 2013 UC Davis Campus Travel Survey, an annual online survey that is randomly administered to students and employees at UC Davis. Based on their responses to questions about current commute mode and contemplation of bicycle commuting, respondents are divided into five stages of change: Pre-contemplation, Contemplation, Preparation, Action, and Maintenance. We construct a Bayesian multilevel ordinal logistic regression model to understand how differences in socio-demographic characteristics, travel attributes, and travel attitudes between individuals explain their membership in different stages of change. In addition, we use this model to explore the potential of various intervention strategies to move individuals through the stages of change toward becoming regular bicycle commuters. Our results indicate that travel attitudes matter more to progression toward regular commute bicycling than travel attributes, tentatively supporting the efficacy of “soft” policies focused on changing travel attitudes.  相似文献   

4.
To better understand bicyclists’ preferences for facility types, GPS units were used to observe the behavior of 164 cyclists in Portland, Oregon, USA for several days each. Trip purpose and several other trip-level variables recorded by the cyclists, and the resulting trips were coded to a highly detailed bicycle network. The authors used the 1449 non-exercise, utilitarian trips to estimate a bicycle route choice model. The model used a choice set generation algorithm based on multiple permutations of path attributes and was formulated to account for overlapping route alternatives. The findings suggest that cyclists are sensitive to the effects of distance, turn frequency, slope, intersection control (e.g. presence or absence of traffic signals), and traffic volumes. In addition, cyclists appear to place relatively high value on off-street bike paths, enhanced neighborhood bikeways with traffic calming features (aka “bicycle boulevards”), and bridge facilities. Bike lanes more or less exactly offset the negative effects of adjacent traffic, but were no more or less attractive than a basic low traffic volume street. Finally, route preferences differ between commute and other utilitarian trips; cyclists were more sensitive to distance and less sensitive to other infrastructure characteristics for commute trips.  相似文献   

5.
Pedestrians and cyclists are vulnerable road users. They are at greater risk for being killed in a crash than other road users. The percentage of fatal crashes that involve a pedestrian or cyclist is higher than the overall percentage of total trips taken by both modes. Because of this risk, finding ways to minimize problematic street environments is critical. Understanding traffic safety spatial patterns and identifying dangerous locations with significantly high crash risks for pedestrians and cyclists is essential in order to design possible countermeasures to improve road safety. This research develops two indicators for examining spatial correlation patterns between elements of the built environment (intersections) and crashes (pedestrian- or cyclist-involved). The global colocation quotient detects the overall connection in an area while the local colocation quotient identifies the locations of high-risk intersections. To illustrate our approach, we applied the methods to inspect the colocation patterns between pedestrian- or cyclist-vehicle crashes and intersections in Houston, Texas and we identified among many intersections the ones that significantly attract crashes. We also scrutinized those intersections, discussed possible attributes leading to high colocation of crashes, and proposed corresponding countermeasures.  相似文献   

6.
Persistent lack of non-motorized traffic counts can affect the evidence-based decisions of transportation planning and safety-concerned agencies in making reliable investments in bikeway and other non-motorized facilities. Researchers have used various approaches to estimate bicycles counts, such as scaling, direct-demand modeling, time series, and others. In recent years, an increasing number of studies have tried to use crowdsourced data for estimating the bicycle counts. Crowdsourced data only represents a small percentage of cyclists. This percentage, on the other hand, can change based on the location, facility type, meteorological, and other factors. Moreover, the autocorrelation observed in bicycle counts may be different from the autocorrelation structure observed among crowdsourced platform users, such as Strava. Strava users are more consistent; hence, the time series count data may be stationary, while bicycle demand may vary based on seasonal factors. In addition to seasonal variation, several time-invariant contributing factors (e.g., facility type, roadway characteristics, household income) affect bicycle demand, which needs to be accounted for when developing direct demand models. In this paper, we use a mixed-effects model with autocorrelated errors to predict daily bicycle counts from crowdsourced data across the state of Texas. Additionally, we supplement crowdsourced data with other spatial and temporal factors such as roadway facility, household income, population demographics, population density and weather conditions to predict bicycle counts. The results show that using a robust methodology, we can predict bicycle demand with a 29% margin of error, which is significantly lower than merely scaling the crowdsourced data (41%).  相似文献   

7.
Abstract

This article shows how the Netherlands, Denmark and Germany have made bicycling a safe, convenient and practical way to get around their cities. The analysis relies on national aggregate data as well as case studies of large and small cities in each country. The key to achieving high levels of cycling appears to be the provision of separate cycling facilities along heavily travelled roads and at intersections, combined with traffic calming of most residential neighbourhoods. Extensive cycling rights of way in the Netherlands, Denmark and Germany are complemented by ample bike parking, full integration with public transport, comprehensive traffic education and training of both cyclists and motorists, and a wide range of promotional events intended to generate enthusiasm and wide public support for cycling. In addition to their many pro‐bike policies and programmes, the Netherlands, Denmark and Germany make driving expensive as well as inconvenient in central cities through a host of taxes and restrictions on car ownership, use and parking. Moreover, strict land‐use policies foster compact, mixed‐use developments that generate shorter and thus more bikeable trips. It is the coordinated implementation of this multi‐faceted, mutually reinforcing set of policies that best explains the success of these three countries in promoting cycling. For comparison, the article portrays the marginal status of cycling in the UK and the USA, where only about 1% of trips are by bike.  相似文献   

8.
In the US, the rise in motorized vehicle travel has contributed to serious societal, environmental, economic, and public health problems. These problems have increased the interest in encouraging non-motorized modes of travel (walking and bicycling). The current study contributes toward this objective by identifying and evaluating the importance of attributes influencing bicyclists’ route choice preferences. Specifically, the paper examines a comprehensive set of attributes that influence bicycle route choice, including: (1) bicyclists’ characteristics, (2) on-street parking, (3) bicycle facility type and amenities, (4) roadway physical characteristics, (5) roadway functional characteristics, and (6) roadway operational characteristics. The data used in the analysis is drawn from a web-based stated preference survey of Texas bicyclists. The results of the study emphasize the importance of a comprehensive evaluation of both route-related attributes and bicyclists’ demographics in bicycle route choice decisions. The empirical results indicate that travel time (for commuters) and motorized traffic volume are the most important attributes in bicycle route choice. Other route attributes with a high impact include number of stop signs, red light, and cross-streets, speed limits, on-street parking characteristics, and whether there exists a continuous bicycle facility on the route.
Chandra R. Bhat (Corresponding author)Email:

Ipek N. Sener   is currently a Ph.D. candidate in transportation engineering at The University of Texas at Austin. She received her M.S. degrees in Civil Engineering and in Architecture, and her B.S. degree in Civil Engineering from the Middle East Technical University in Ankara, Turkey. Naveen Eluru   is currently a Ph.D. candidate in transportation engineering at The University of Texas at Austin. He received his M.S. degree in Civil Engineering from The University of Texas at Austin, and his Bachelors in Technology Degree from Indian Institute of Technology in Madras, India. Chandra R. Bhat   is a Professor in Transportation at The University of Texas at Austin. He has contributed toward the development of advanced econometric techniques for travel behavior analysis, in recognition of which he received the 2004 Walter L. Huber Award and the 2005 James Laurie Prize from the American Society of Civil Engineers (ASCE), and the 2008 Wilbur S. Smith Distinguished Transportation Educator Award from the Institute of Transportation Engineers (ITE). He is the immediate past chair of the Transportation Research Board Committee on Transportation Demand Forecasting and the International Association for Travel Behaviour Research.  相似文献   

9.
A promising alternative transportation mode to address growing transportation and environmental issues is bicycle transportation, which is human-powered and emission-free. To increase the use of bicycles, it is fundamental to provide bicycle-friendly environments. The scientific assessment of a bicyclist’s perception of roadway environment, safety and comfort is of great interest. This study developed a methodology for categorizing bicycling environments defined by the bicyclist’s perceived level of safety and comfort. Second-by-second bicycle speed data were collected using global positioning systems (GPS) on public bicycles. A set of features representing the level of bicycling environments was extracted from the GPS-based bicycle speed and acceleration data. These data were used as inputs for the proposed categorization algorithm. A support vector machine (SVM), which is a well-known heuristic classifier, was adopted in this study. A promising rate of 81.6% for correct classification demonstrated the technical feasibility of the proposed algorithm. In addition, a framework for bicycle traffic monitoring based on data and outcomes derived from this study was discussed, which is a novel feature for traffic surveillance and monitoring.  相似文献   

10.
Over the past two decades, the number of bicycle trips in the United States has doubled. Since 48% of trips by all modes in American cities are shorter than three miles, the potential for further growth in bicycling seems enormous. So far, efforts to promote bicycling have focused on building bike paths and bike lanes. Although necessary, separate cycling facilities must be complemented by a comprehensive program to make all roads bikeable, through both physical adaptations and enforcement of cyclists' right to use the road. It seems likely that cycling will continue to grow in North America, but that its mode share will remain far lower than levels in northern Europe. Bicycling in Canada and especially the United States is impeded by the lack of a tradition of cycling for utilitarian purposes and by the marginal legal, cultural and infrastructure status of cyclists in both countries' automobile-based transport systems. As long as car use remains cheap and transportation policy remains dominated by motoring, bicycles will continue to be used primarily for recreation and not for daily urban travel in North America.  相似文献   

11.
Pedestrians and cyclists are amongst the most vulnerable road users. Pedestrian and cyclist collisions involving motor-vehicles result in high injury and fatality rates for these two modes. Data for pedestrian and cyclist activity at intersections such as volumes, speeds, and space–time trajectories are essential in the field of transportation in general, and road safety in particular. However, automated data collection for these two road user types remains a challenge. Due to the constant change of orientation and appearance of pedestrians and cyclists, detecting and tracking them using video sensors is a difficult task. This is perhaps one of the main reasons why automated data collection methods are more advanced for motorized traffic. This paper presents a method based on Histogram of Oriented Gradients to extract features of an image box containing the tracked object and Support Vector Machine to classify moving objects in crowded traffic scenes. Moving objects are classified into three categories: pedestrians, cyclists, and motor vehicles. The proposed methodology is composed of three steps: (i) detecting and tracking each moving object in video data, (ii) classifying each object according to its appearance in each frame, and (iii) computing the probability of belonging to each class based on both object appearance and speed. For the last step, Bayes’ rule is used to fuse appearance and speed in order to predict the object class. Using video datasets collected in different intersections, the methodology was built and tested. The developed methodology achieved an overall classification accuracy of greater than 88%. However, the classification accuracy varies across modes and is highest for vehicles and lower for pedestrians and cyclists. The applicability of the proposed methodology is illustrated using a simple case study to analyze cyclist–vehicle conflicts at intersections with and without bicycle facilities.  相似文献   

12.
The main obstacles to boosting the bicycle as a mode of transport are safety concerns due to interactions with motorized traffic. One option is to separate cyclists from motorists through exclusive bicycle priority lanes. This practice is easily implemented in uncongested traffic. Enforcing bicycle lanes on congested roads may degenerate the network, making the idea very hard to sell both to the public and the traffic authorities. Inspired by Braess Paradox, we take an unorthodox approach to seeking latent misutilized capacity in the congested networks to be dedicated to exclusive bicycle lanes. The aim of this study is to tailor an efficient and practical method to large size urban networks. Hence, this paper appeals to policy makers in their quest to scientifically convince stakeholder that bicycle is not a secondary mode, rather, it can be greatly accommodated along with other modes even in the heart of the congested cities. In conjunction with the bicycle lane priority, other policy measures such as shared bicycle scheme, electric-bike, integration of public transport and bicycle are also discussed in this article. As for the mathematical methodology, we articulated it as a discrete bilevel mathematical programing. In order to handle the real networks, we developed a phased methodology based on Branch-and-Bound (as a solution algorithm), structured in a less intensive RAM manner. The methodology was tested on real size network of city of Winnipeg, Canada, for which the total of 30 road segments – equivalent to 2.77 km bicycle lanes – in the CBD were found.  相似文献   

13.
In this paper we explore the air pollution levels along types of bicycle facilities using a NO2 land use model previously developed for Montreal. We explore potential associations between bicycle volumes through signalized intersections and pollution levels at those intersections. We further investigate this relationship through the comparison of over thirty cycling corridors as well as an evaluation of the potential exposure of cyclists to air pollution along five routes. We observe NO2 concentrations to be positively correlated with bicycle flows at the intersection level. We also observe that corridors with either a bicycle path or cycle track generally rank higher in terms of bicycle volume and also have higher NO2 concentrations than corridors without bicycle facilities. This indicates that intersections and bicycle facilities with a large number of cyclists are also those characterized with the highest air pollution levels.  相似文献   

14.
Few studies have quantified relationships between bicyclist exposure to air pollution and roadway and traffic variables. As a result, transportation professionals are unable to easily estimate exposure differences among bicycle routes for network planning, design, and analysis. This paper estimates the effects of roadway and travel characteristics on bicyclist exposure concentrations, controlling for meteorology and background conditions. Concentrations of volatile organic compounds (VOC) and carbon monoxide (CO) are modeled using high-resolution data collected on-road. Results indicate that average daily traffic (ADT) provides a parsimonious way to characterize the impact of roadway characteristics on bicyclists’ exposure. VOC and CO exposure increase by approximately 2% per 1000 ADT, robust to different regression model specifications. Exposure on off-street facilities is higher than at a park, but lower than on-street riding – with the exception of a path through an industrial corridor with significantly higher exposure. VOC exposure is 20% higher near intersections. Traffic, roadway, and travel variables have more explanatory power in the VOC models than the CO model. The quantifications in this paper enable calculation of expected exposure differences among travel paths for planning and routing applications. The findings also have policy and design implications to reduce bicyclists’ exposure. Separation between bicyclists and motor vehicle traffic is a necessary but not sufficient condition to reduce exposure concentrations; off-street paths are not always low-exposure facilities.  相似文献   

15.
As a means of transportation and as a form of physical activity, bicycling generates benefits to the bicyclist as well as to the community as a whole. Bicycling now accounts for less than 1 percent of all trips for all purposes in the U.S., but evidence from other western countries suggests that under the right conditions, bicycling levels can be significantly higher. Indeed, the experiences of some U.S. cities suggest that it is possible to create conditions conducive to higher levels of bicycling even in the U.S. However, the extent to which bicycle investments have contributed to bicycling levels in these communities has not been rigorously assessed. The purpose of this study is to provide a better understanding of the determinants of bicycle ownership and use as a basis for identifying ways to promote bicycling. A cross-sectional study of six cities was designed to test the importance of bicycle infrastructure and other physical environment factors relative to individual factors and social environment factors, using a nested logit model to examine ownership and use decisions jointly. The results show strong effects of individual attitudes and physical and social environment factors on bicycle ownership and use.  相似文献   

16.
Blickstein  Susan  Hanson  Susan 《Transportation》2001,28(4):347-362
Critical Mass, an urban bicycle/sustainability movement, began in San Francisco in 1992 and has spread to more than 100 cities around the world during the past eight years. Featuring organized monthly bicycle rides in specific cities, Critical Mass uses the Internet to sustain local and global actions, combining cyber-communication with face-to-face interactions. Critical Mass aims to shape debates on sustainability and material practices that will contribute to sustainable communities through a celebration of bicycling. We examine the ways in which Critical Mass uses scale to organize for sustainability. We also describe, through a survey of participants and interviews with bicycle advocates, how Critical Mass has been successful in changing people's travel behavior and in legitimizing the efforts of formal advocacy organizations.  相似文献   

17.
With the rapid increase of electric bicycles (E-bikes) in China, the heterogeneous bicycle traffic flow comprising regular bicycles and E-bikes using shared cycleway creates issues in terms of efficiency as well as safety. Capacity and bicycle equivalent units (BEUs) for E-bikes are two most important parameters for the planning, design, operation, and management of bicycle facilities. In this paper, eight traffic flow fundamental diagrams are developed for one-way cycleway capacity estimation, and a novel BEU estimation model is also proposed. Eleven datasets from different shared cycleway sections with different cycleway widths were collected in Hangzhou, China for estimation and evaluation purposes. The results indicate that, with around 70% share of E-bikes, the mean estimated capacity is 2348 bicycle/h/m. The effects on the capacity of the proportions of E-bikes, gender of cyclists, age of cyclists, and cyclists carrying things were also analyzed. The results implied that the estimated capacity is independent of a cyclist’s gender and age, but increases with the proportion of E-bikes. According to this study, the mean BEU for the E-bike is 0.66, and the converted capacities of pure regular bicycles and pure E-bikes are 1800 and 2727 bicycle/h/m, respectively. These findings can be used to propose practical countermeasures to improve the capacity of heterogeneous bicycle traffic flow on shared cycleway.  相似文献   

18.
Very little is known about cyclist speeds and delays at the disaggregate level of each road segment and intersection in an entire city network. Speeds and delays serve as vital information for planning, navigation and routing purposes including how they differ for different times of the day and across road and bicycle facility types, after controlling for other factors. In this work, we explore the use of recent GPS cyclist trip data, from the Mon RésoVélo Smartphone application, to identify different performance measures such as travel time, speed and delay at the level of the entire network of roads and intersections on the island of Montreal. Also, a linear regression model is formulated to identify the geometric design and built environment characteristics affecting cyclist speeds on road segments. Among other results, on average, segment speeds are greater along arterials than on local streets and greater along segments with bicycle infrastructure than those without. Incorporating different measures of cyclist personality in the models revealed that the following characteristics all affect cyclist speeds along segments, each cyclist’s average speed on uphill, downhill and level segments as well as geometric design and built environment characteristics. The model results also identify that the factors that increase cyclist speeds along segments include, segments which have cyclists biking for work or school related purposes, segments used during morning peak and segments which do not have signalized intersections at either end.  相似文献   

19.
Using bicycles as a commuting mode has proven to be beneficial to both urban traffic conditions and travelers’ health. In order to efficiently design facilities and policies that will stimulate bicycle use, it is necessary to first understand people’s attitudes towards bicycle use, and the factors that may influence their preferences. Such an understanding will enable reliable predictions of bicycle use willingness level, based on which cycling facility construction can be reasonably prioritized.As people often have different perceptions on exercising, green transportation, and traffic conditions, effects of potentially influencing factors on people’s willingness of using bicycles tend to be highly heterogeneous. This paper uses a random parameter ordered probit model to analyze how travelers’ willingness of using bicycles is influenced by various socio-economic factors in Belo Horizonte City, Brazil, with the consideration of individual heterogeneity. The data was collected through the 2010 bicycle use survey in Belo Horizonte City. Results show that, first, the willingness of using bicycle is favored by middle income class household, and negatively related with commuting time. Second, people who rent apartments tend to be more willing to use bicycles. Third, if a person is currently walking a long time to work, he/she would be most willing to commute with a bicycle in the future. Those currently commuting a relatively short distance by motorcycle and bus follow this group in terms of willingness to commute by bicycle in the future. Car users seem to be difficult to convert to bicycle users. Moreover, the estimation shows clear evidence that significant individual heterogeneity indeed exists, especially for education level, necessitating the consideration of such an effect. With the calibrated model, residents’ willingness of using bicycle commuting is then estimated for the entire Belo Horizonte City using the 2010 Census and the 2012 O/D survey data. The results are cross validated using the bicycle path preference information, also obtained from the 2010 bicycle use survey.  相似文献   

20.
In a survey of 1,402 current and potential cyclists in Metro Vancouver, 73 motivators and deterrents of cycling were evaluated. The top motivators, consistent among regular, frequent, occasional and potential cyclists, were: routes away from traffic noise and pollution; routes with beautiful scenery; and paths separated from traffic. In factor analysis, the 73 survey items were grouped into 15 factors. The following factors had the most influence on likelihood of cycling: safety; ease of cycling; weather conditions; route conditions; and interactions with motor vehicles. These results indicate the importance of the location and design of bicycle routes to promote cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号