首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为实现大跨度桥梁仿真分析精细化的要求,在悬索桥结构分析理论的基础上,以某悬索桥为工程实例,建立了悬索桥结构的有限元分析模型,进行了悬索桥桥面线形变化的敏感性参数分析。研究结果表明,主缆刚度对桥面线形变化非常敏感,吊索刚度、加劲梁刚度、主塔刚度、混凝土容重对桥面线形变化相对不敏感;在结构有限元模型建模过程中,应对计算模型的参数取值进行修正,以提高有限元模型的计算精度;结构敏感参数分析是结构有限元模型修正的基础,对其进行有效地分析,具有十分重要的意义。  相似文献   

2.
自锚式悬索桥一般采用先架设主梁后安装主缆的施工方式,在体系转化过程中非线性受力状态非常复杂,因此有限元模型仿真分析计算难以准确把握真实桥梁的力学行为,所以对自锚式悬索桥有限元模型修正是必要的。依据能够反映真实桥梁结构响应的测试结果对桥梁的有限元模型进行修正,从而得到一个准确反映桥梁受力状况和健康状态的模型。该文通过对阳明滩大桥进行环境振动试验测试得到了桥梁固有频率,并以此为目标控制阳明滩大桥的有限元模型修正的各项参数配置。应用基于响应面法对该自锚式悬索桥实现基于动力测试的有限元模型修正,使得模型的准确度有了显著的提高。对其他结构相近的自锚式悬索桥有限元模型的建立有很好的借鉴作用。  相似文献   

3.
基于传统参数型模型修正方法,通过将悬索桥主缆划分为多段,并将每段主缆的弹性模量均作为独立的模型修正参数,提出了一种针对大跨径悬索桥有限元模型修正的改进方法——优化参数型模型修正方法。首先,根据对拟定参数的灵敏度计算选定灵敏度较大的参数;然后,进行多次有限元计算求取参数灵敏度矩阵;最后,优化参数识别条件,识别模型修正参数值。依托世界第一大跨径分体式钢箱梁悬索桥——西堠门大桥,建立桥梁结构有限元模型,并采用优化参数型方法进行模型修正。结果表明:修正所得模型各测点误差均小于5%,模型整体和局部响应与桥梁实际状态十分吻合,该方法可推广应用于大跨径悬索桥的模型修正。  相似文献   

4.
大跨度悬索桥主缆施工温度时变效应研究   总被引:1,自引:0,他引:1  
大跨度悬索桥对温度场十分敏感,在主缆索股架设过程中这现象表现得尤为突出,通过对悬索桥结构温度时变效应计算理论的研究,给出了温度场布设方案及测试方法。以湖北某大跨度悬索桥为工程背景,对施工期间该桥的温度场进行了实时观测,得出了该悬索桥主塔及主缆的温度场。借助大型有限元计算程序ANSYS,通过对实测数据与理论计算结果的对比分析,验证了提出的温度场布设方案及测试方法的可行性。通过对不同温度场下的结构线形进行实时分析,得出了索塔及主缆索股在不同温度场下的线形及相应的变化规律,据此确定了的最佳调索时机,同时将分析所得的结果直接指导工程实践。结果表明:该方案及方法实用性强、精度高,具有较强的推广应用价值。  相似文献   

5.
提出了大跨斜拉桥索塔有限元模型的阶次误差、结构误差和参数误差的分层次修正方法。根据润扬斜拉桥索塔的设计图纸,在索塔有限元模型的阶次误差分析和结构误差分析基础上,确定了索塔单元划分的数目和梁柱节点刚域的计算参数。在此基础上,采用基于灵敏度分析的模型参数修正方法,结合索塔动力特性的测试结果对索塔的初始有限元模型进行了动力修正。模型修正与验证结果表明,索塔模型参数的修正必须考虑梁柱节点刚域的影响以及修正参数的上、下限值约束。修正后的润扬斜拉桥索塔模型能全面、正确地反映索塔结构的动力特性,可作为索塔结构健康监测与安全评估的基准有限元模型。  相似文献   

6.
自锚式钢结构悬索桥,主缆索力较大、且主缆锚固区受力复杂,为验证主缆锚固区安全性及主要受力壁板应力分布规律,结合烟台夹河大桥主缆锚固区缩尺模型试验,进行了不同工况下缩尺试验模型与足尺结构模型受力计算,研究讨论了大桥主缆锚固区实际受力状态以及壁板应力分布规律。对比研究结果表明,缩尺模型试验有限元模拟结果与试验测试结果吻合较好,在主要受力板件的应力分布规律方面,缩尺有限元模拟结果与足尺模型模拟结果吻合较好。  相似文献   

7.
探讨了基于结构受力响应敏感点的应变残差的装配式简支梁桥有限元模型修正技术.由灵敏度分析确定结构优化变量,通过敏感点有限元计算应变与实测应变获得应变残差即应变比能残差总和,并表示成优化变量的函数,以残差为零为优化逼近目标,结合零阶及一阶优化方法进行模型修正计算.以一座5片箱梁组成的装配式简支梁桥为研究对象,将实桥应变测试...  相似文献   

8.
利用MIDAS/Civil有限元软件构建了大跨度悬索桥单缆结构和双缆结构体系下有限元模型,针对两种结构模型在汽车活载、横风荷载、自振频率结构特性和受力特征进行了模拟分析。研究结果表明:汽车活载作用下,双缆体系下的竖向挠度包络曲线位于单缆体系内侧,双缆结构加劲梁竖向挠度较单缆结构有所减小;横风荷载下,两种结构体系下的横向弯矩、挠度下的变化曲线较为类似,且双缆结构下的极值更大,在桥塔和跨中处加劲梁横向弯矩取得最大值,跨中处边跨挠度取得最小值,且主跨段挠度远大于边跨段挠度值;双缆结构的大跨度索桥一阶纵飘频率、横弯频率和扭转频率有所下降;一阶竖弯频率有所增加。从两种模型的分析结果表明,双缆结构大跨度悬索桥具有更优的受力特性和安全使用性能。  相似文献   

9.
实际桥梁结构的整体有限元模型修正时自由度和单元数量较多,待修正参数多,有限元模型修正精度和效率低。为了提高有限元模型修正的效率,提出基于子结构的有限元模型修正方法。子结构方法是化整体分析为局部分析的方法,与直接修正大型桥梁有限元模型相比,子结构方法只需要计算每个子结构少量低阶模态,得到整体结构的特征解及特征解灵敏度,形成模型修正的目标方程和灵敏度矩阵,进而缩短模型修正时间。将基于子结构的模型修正方法用于怒江特大桥主桥(上承式钢桁拱桥)有限元模型修正,结果表明:修正后桥梁的前10阶频率与桥梁的模拟实测频率值相吻合,且模型修正时间仅为传统整体方法的56%。  相似文献   

10.
大跨度悬索桥主缆成桥线形是进行结构分析、计算和指导施工的关键控制因素,采用有限位移理论可较全面地考虑大位移引起的悬索桥几何非线性.利用通用有限元程序,建立全桥平面有限元模型,实现了悬索桥施工过程的模拟计算,并且使用悬索桥施工理想初态及成桥状态的迭代算法来确定主缆成桥线形.结果表明,悬索桥主缆的线形是介于抛物线与悬链线之间的索多边形.  相似文献   

11.
宁德市人行悬索桥计算跨径为311.5 m,采用斜拉索辅助桥面主缆受力结构体系。斜拉索主塔纵桥向间距191 m,横桥向采用外圆内方造型。桥面系通过纵向主缆与纵、横梁联合受力,纵、横梁固定在主缆上。人行道板采用防腐木板。桥梁施工顺序为锚碇及主塔基础及塔身、主缆、纵横梁、风缆、桥面防腐木及栏杆,然后斜拉索施工。考虑施工过程,采用桥梁专用有限元软件Midas/Civil 2019,构建了全桥计算分析模型。计算结果表明:桥梁结构整体刚度大,各构件受力合理,应力与活载下变形均满足相关规范规程要求。  相似文献   

12.
宁德市人行悬索桥计算跨径为311.5 m,采用斜拉索辅助桥面主缆受力结构体系。斜拉索主塔纵桥向间距191 m,横桥向采用外圆内方造型。桥面系通过纵向主缆与纵、横梁联合受力,纵、横梁固定在主缆上。人行道板采用防腐木板。桥梁施工顺序为锚碇及主塔基础及塔身、主缆、纵横梁、风缆、桥面防腐木及栏杆,然后斜拉索施工。考虑施工过程,采用桥梁专用有限元软件Midas/Civil 2019,构建了全桥计算分析模型。计算结果表明:桥梁结构整体刚度大,各构件受力合理,应力与活载下变形均满足相关规范规程要求。  相似文献   

13.
在悬索桥锚跨段索力测试中,传统的振弦法将锚跨段索振动看作为理想弦振动,忽略了锚跨段拉杆的抗弯刚度,带来了较大的索力测量计算结果误差。为了求解更加精确的锚跨段索力值,保证悬索桥主缆索力监控的精确性、成桥阶段主缆线型的准确性和吊索索力的均匀分布,通过分析索梁组合结构模型,建立了锚跨拉杆与锚跨主缆的索梁组合力学模型,运用主缆振动频率的索力计算方法,运用Hamilton变分原理推导提出悬索桥锚跨段,锚跨拉杆与锚跨主缆的索梁组合结构的索力修正算法。分析了锚跨拉杆与索连接处的边界条件问题,保持索梁连接处为铰接状态,不改变边界条件的物理属性。基于Mathematica数学计算软件上,设计求解程序并求解索梁组合结构振动矩阵方程,得出对应索梁组合结构频率的索力值的数值解。通过对比分析数据理论计算、有限元分析软件及恩施水布垭清江特大悬索桥实际工程实例测量结果,来验证考虑悬索桥锚跨段拉杆的抗弯刚度修正算法的合理性。研究结果表明:相对于传统的索力测试简化算法,运用索梁组合结构推导的锚跨段索力计算公式,可以更准确地表达索力、锚跨拉杆抗弯刚度和索力基频之间的关系,进而减小因为拉杆抗弯刚度所带来的索力计算结果的误差,得到更加符合实际主缆张拉状态的索力值。  相似文献   

14.
推导了地锚式独塔悬索桥的主、边跨极限跨径计算公式,为验证超大跨径的地锚式独塔悬索桥在结构受力方面是否依然满足要求,试设计了一座主跨为2 000 m的地锚式独塔单跨悬索桥方案,建立结构有限元模型进行结构受力计算分析,结果表明:主缆应力以及加劲梁挠度均满足要求.  相似文献   

15.
针对大跨度悬索桥主缆的精细化分析中不能同时考虑主缆弯曲刚度、主缆初始弯曲、索鞍及缠丝等因素的影响,提出了一种新型的初弯曲梁单元来模拟主缆的弯曲刚度和初始弯曲,通过虚功增量方程推导其切线刚度矩阵,并编制了主缆非线性有限元程序,建立大跨度悬索桥主缆施工过程的有限元模型,计算中考虑了索鞍处主缆线形的修正及由缠丝引起的主缆弯曲刚度的变化.结果表明:弯曲刚度使主缆在恒载作用下的竖向变形减小,成桥状态时由此引起的主缆线形计算偏差没有超过工程精度的要求;成桥状态时靠近桥塔的吊索吊点处主缆的弯矩及弯曲应力显著,需要在大跨度悬索桥主缆设计和施工中加以考虑.  相似文献   

16.
针对施工期的超大跨度钢箱粱斜拉桥的结构力学行为对结构参数的敏感度问题,基于几何控制法的基本原理,以苏通大桥为研究对象,建立了考虑几何非线性效应的施工全过程有限元模型.当结构几何参数、刚度参数和荷载参数发生变化时,对施工全过程单参数敏感性进行了系统的分析.计算分析过程明确了几何控制法计算分析的要点,计算结果揭示了超大跨度斜拉桥的力学行为特点,并确定了影响主梁线形和索塔偏移的关键敏感性结构参数,为制造阶段和施工阶段控制容许误差的确定、误差修正及最优控制决策提供科学依据.  相似文献   

17.
本文以四渡河大桥为工程背景,根据大跨度悬索桥上部结构施工过程中索塔的受力特性,合理划分施工阶段,采取主鞍预偏、分次顶推的方法,有效控制索塔应力。可作为其他类似工程控制的参考。  相似文献   

18.
自锚式悬索桥主缆线形计算方法及施工过程分析   总被引:3,自引:2,他引:1  
自锚式悬索桥缆索系统线形的计算采用有限元方法或索段数值计算均有一定的局限性,文章结合两者的特点,通过建立非线性有限元模型,并结合索段数值计算方法迭代求解自锚式悬索桥线形及内力.湖南长沙三汊矶自锚式悬索桥通过在中跨临时墩处顶升主梁后进行吊索的无应力安装,避免了反复张拉吊索的过程.利用所编制程序对大桥成桥阶段主缆线形及缆索架设过程中的受力状态进行计算,计算结果表明施工过程中主缆、吊索及主梁内力变化均匀,支座无负反力出现,验证了施工方法的可靠性.长沙三汊矶大桥所采用的缆索架设方法及计算过程可为同类型桥梁的设计及施工提供参考.  相似文献   

19.
刘小红  汪剑 《城市道桥与防洪》2020,(1):65-67,M0009,M0010
结合某不等高三塔大跨悬索桥,以节线法理论为基础,通过常用的Excel软件反复迭代计算其主缆的初始平衡位置以及主缆拉力,为验证该算法的可行性及工程精度,以此为基础建立Midas全桥结构有限元模型,并利用Midas悬链线索单元进行更精确的分析,得到悬索桥初始平衡位置以及主缆拉力。通过对比两种计算方法的结果可以发现,节线法这一近似计算方法能够满足工程需要,且使用方便.无需复杂的编程计算,具有一定的实用意义,可为同类型桥梁主缆线形分析提供参考。  相似文献   

20.
为研究地球曲率、温度、主缆弹性模量以及加劲梁恒载误差对2 000 m级超大跨度悬索桥主缆成桥线形的影响,以主跨2 180 m的广州狮子洋大桥为背景,采用BNLAS软件建立主桥有限元模型,基于单一变量法对上述参数的影响性进行分析。结果表明:地球曲率对超大跨度悬索桥的主缆成桥线形影响较大,可通过在索股制造时对分跨标记点进行修正以避免该因素的影响;主缆成桥线形对温度变化极其敏感,建议增加温度测试断面数量以得到更为精确的温度场分布,据此对主缆成桥线形进行修正;主缆弹性模量影响索股的无应力长度,进而影响主缆成桥线形,需增加钢丝弹性模量的测试精度及抽样比例,得到符合实际主缆弹性模量的检测值,据此修正主缆成桥线形;加劲梁恒载误差对主缆成桥线形的影响很大,主缆架设前需要对钢梁进行称重并测试铺装材料的容重,根据实际重量重新计算主缆成桥线形,并且在铺装层施工时精确控制铺装层厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号