首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To support the development of policies that reduce greenhouse gas (GHG) emissions by encouraging reduced travel and increased use of efficient transportation modes, it is necessary to better understand the explanatory effects that transportation, population density, and policy variables have on passenger travel related CO2 emissions. This study presents the development of a model of CO2 emissions per capita as a function of various explanatory variables using data on 146 urbanized areas in the United States. The model takes into account selectivity bias resulting from the fact that adopting policies aimed at reducing emissions in an urbanized area may be partly driven by the presence of environmental concerns in that area. The results indicate that population density, transit share, freeway lane-miles per capita, private vehicle occupancy, and average travel time have a statistically significant explanatory effect on passenger travel related CO2 emissions. In addition, the presence of automobile emissions inspection programs, which serves as a proxy indicator of other policies addressing environmental concerns and which could influence travelers in making environmentally favorable travel choices, markedly changes the manner in which transportation variables explain CO2 emission levels.  相似文献   

2.
As decision-makers increasingly embrace life-cycle assessment (LCA) and target transportation services for regional environmental goals, it becomes imperative that outcomes from changes to transportation infrastructure systems are accurately estimated. Greenhouse gas (GHG) reduction policies have created interest in better understanding how public transit systems reduce emissions. Yet the use of average emission factors (e.g., grams CO2e per distance traveled) persists as the state-of-the-art masking the variations in emissions across time, and confounding the ability to accurately estimate the environmental effects from changes to transit infrastructure and travel behavior. An LCA is developed of the Expo light rail line and a competing car trip (in Los Angeles, California) that includes vehicle, infrastructure, and energy production processes, in addition to propulsion. When results are normalized per passenger kilometer traveled (PKT), life-cycle processes increase energy use and GHG emissions up to 83%, and up to 690% for smog and respiratory impact potentials. However, the use of a time-independent PKT normalization obfuscates a decision-maker’s ability to understand whether the deployment of a transit system reduces emissions below a future year policy target (e.g., 80% of 1990 emissions by 2050). The year-by-year marginal effects of the decision to deploy the Expo line are developed including reductions in automobile travel. The time-based marginal results provide clearer explanations for how environmental effects in a region change and the critical life-cycle processes that should be targeted to achieve policy targets. It shows when environmental impacts payback and how much reduction is achieved by a policy-specified future year.  相似文献   

3.
Experts predict that new automobiles will be capable of driving themselves under limited conditions within 5–10 years, and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. We review the literature for estimates of the energy impacts of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. We close by presenting some implications for policymakers and identifying priority areas for further research.  相似文献   

4.
Transportation is an important source of greenhouse gas (GHG) emissions. In this paper, we develop a bi-level model for GHG emission charge based on continuous distribution of the value of time (VOT) for travelers. In the bi-level model framework, a policy maker (as the leader) seeks an optimal emission charge scheme, with tolls differentiated across travel modes (e.g., bus, motorcycles, and cars), to achieve a given GHG reduction target by shifting the proportions of travelers taking different modes. In response, travelers (as followers) will adjust their travel modes to minimize their total travel cost. The resulting mode shift, hence the outcome of the emission charge policy, depends on travelers’ VOT distribution. For the solution of the bi-level model, we integrate a differential evolution algorithm for the upper level and the “all or nothing” traffic assignment for the lower level. Numerical results from our analysis suggest important policy implications: (1) in setting the optimal GHG emission charge scheme for the design of transportation GHG emission reduction targets, policy makers need to be equipped with rigorous understanding of travelers’ VOT distribution and the tradeoffs between emission reduction and system efficiency; and (2) the optimal emission charge scheme in a city depends significantly on the average value of travelers’ VOT distribution—the optimal emission charge can be designed and implemented in consistency with rational travel flows. Further sensitivity analysis considering various GHG reduction targets and different VOT distributions indicate that plausible emission toll schemes that encourage travelers to choose greener transportation modes can be explored as an efficient policy instrument for both transportation network performance improvement and GHG reduction.  相似文献   

5.
The Intergovernmental Panel on Climate Change estimates that greenhouse gas emissions (GHG) must be cut 40–70% by 2050 to prevent a greater than 2 °Celsius increase in the global mean temperature; a threshold that may avoid the most severe climate change impacts. Transportation accounts for about one third of GHG emissions in the United States; reducing these emissions should therefore be an important part of any strategy aimed at meeting the IPCC targets. Prior studies find that improvements in vehicle energy efficiency or decarbonization of the transportation fuel supply would be required for the transportation sector to achieve the IPCC targets. Strategies that could be implemented by regional transportation planning organizations are generally found to have only a modest GHG reduction potential. In this study we challenge these findings. We evaluate what it would take to achieve deep GHG emission reductions from transportation without advances in vehicle energy efficiency and fuel decarbonization beyond what is currently expected under existing regulations and market expectations. We find, based on modeling conducted in the Albuquerque, New Mexico metropolitan area that it is possible to achieve deep reductions that may be able to achieve the IPCC targets. Achieving deep reductions requires changes in transportation policy and land-use planning that go far beyond what is currently planned in Albuquerque and likely anywhere else in the United States.  相似文献   

6.
The 1990 Clean Air Act Amendments (CAAA) and the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) have defined a set of transportation control measures to counter the increase in the vehicle emissions and energy consumption due to increased travel. The value of these TCM strategies is unknown as there is limited data available to measure the travel effects of individual TCM strategies and the models are inadequate in forecasting changes in travel behavior resulting from these strategies. The work described in this paper begins to provide an operational methodology to overcome these difficulties so that the impacts of the policy mandates of both CAAA and ISTEA can be assessed. Although the framework, as currently developed, falls well short of actually forecasting changes in traveler behavior relative to policy options designed to encourage emissions reduction, the approach can be useful in estimating upper bounds of certain policy alternatives in reducing vehicle emissions. Subject to this important limitation, the potential of transportation policy options to alleviate vehicle emissions is examined in a comprehensive activity-based approach. Conclusions are drawn relative to the potential emissions savings that can be expected from efficient trip chaining behavior, ridesharing among household members, as well as from technological advances in vehicle emissions control devices represented by replacing all of the vehicles in the fleet by vehicles conforming to present-day emissions technology.  相似文献   

7.
This paper examines the life-cycle inventory impacts on energy use and greenhouse gas (GHG) emissions as a result of candidate travelers adopting carsharing in US settings. Here, households residing in relatively dense urban neighborhoods with good access to transit and traveling relatively few miles in private vehicles (roughly 10% of the U.S. population) are considered candidates for carsharing. This analysis recognizes cradle-to-grave impacts of carsharing on vehicle ownership levels, travel distances, fleet fuel economy (partly due to faster turnover), parking demand (and associated infrastructure), and alternative modes. Results suggest that current carsharing members reduce their average individual transportation energy use and GHG emissions by approximately 51% upon joining a carsharing organization. Collectively, these individual-level effects translate to roughly 5% savings in all household transport-related energy use and GHG emissions in the U.S. These energy and emissions savings can be primarily attributed to mode shifts and avoided travel, followed by savings in parking infrastructure demands and fuel consumption. When indirect rebound effects are accounted for (assuming travel-cost savings is then spent on other goods and services), net savings are expected to be 3% across all U.S. households.  相似文献   

8.
A leading cause of air pollution in many urban regions is mobile source emissions that are largely attributable to household vehicle travel. While household travel patterns have been previously related with land use in the literature (Crane, R., 1996. Journal of the American Planning Association 62 (1, Winter); Cervero, R. and Kockelman, C., 1997. Transportation Research Part D 2 (3), 199–219), little work has been conducted that effectively extends this relationship to vehicle emissions. This paper describes a methodology for quantifying relationships between land use, travel choices, and vehicle emissions within the Seattle, Washington region. Our analysis incorporates land use measures of density and mix which affect the proximity of trip origins to destinations; a measure of connectivity which impacts the directness and completeness of pedestrian and motorized linkages; vehicle trip generation by operating mode; vehicle miles/h of travel and speed; and estimated household vehicle emissions of nitrogen oxides, volatile organic compounds, and carbon monoxide. The data used for this project consists of the Puget Sound Transportation Panel Travel Survey, the 1990 US Census, employment density data from the Washington State Employment Security Office, and information on Seattle’s vehicle fleet mix and climatological attributes provided by the Washington State Department of Ecology. Analyses are based on a cross-sectional research design in which comparisons are made of variations in household travel demand and emissions across alternative urban form typologies. Base emission rates from MOBILE5a and separate engine start rates are used to calculate total vehicle emissions in grams accounting for fleet characteristics and other inputs reflecting adopted transportation control measures. Emissions per trip are based on the network distance of each trip, average travel speed, and a multi-stage engine operating mode (cold start, hot start, and stabilized) function.  相似文献   

9.
Globalization, greenhouse gas emissions and energy concerns, emerging vehicle technologies, and improved statistical modeling capabilities make the present moment an opportune time to revisit aggregate vehicle miles traveled (VMT), energy consumption, and greenhouse gas (GHG) emissions forecasting for passenger transportation. Using panel data for the 48 continental states during the period 1998-2008, the authors develop simultaneous equation models for predicting VMT on different road functional classes and examine how different technological solutions and changes in fuel prices can affect passenger VMT. Moreover, a random coefficient panel data model is developed to estimate the influence of various factors (such as demographics, socioeconomic variables, fuel tax, and capacity) on the total amount of passenger VMT in the United States. To assess the influence of each significant factor on VMT, elasticities are estimated. Further, the authors investigate the effect of different policies governing fuel tax and population density on future energy consumption and GHG emissions. The presented methodology and estimation results can assist transportation planners and policy-makers in determining future energy and transportation infrastructure investment needs.  相似文献   

10.
Global GHG emissions from air travel are currently at 3% and it could increase to 15% of the total GHG emissions by 2050. To curb the growth of GHG emissions from air travel, the U.S. Federal Aviation Administration (FAA) has created a policy to achieve carbon neutral growth by 2020 relative to the 2005 baseline. If the airline industry is to both grow and meet the objectives set by this policy, new and innovative aircraft designs, operational efficiencies, and widespread use of alternate fuels are required. To accomplish this would require large research and development investment. The federal government and state governments have passed legislations that provide tax breaks and other incentives to encourage investments in new technologies. One such tax policies is cap and trade system. This had partial success in reducing GHG emissions in certain industries but was not successful in the airline industry. This paper presents alternate methods to raise capital to invest in GHG emissions reduction projects in the airline sector. The four methodologies presented here monetizes the GHG emissions resulting from differences in load factor (ratio of number of passengers to number of seats) and GHG emissions per passenger-mile among different airlines, among different flight sectors, etc. to raise the capital. Based on 2012 air travel data, these methodologies could raise more than $300 million dollars annually to invest in GHG emissions reduction projects.  相似文献   

11.
Climate change is one of the most critical environmental challenges faced in the world today. The transportation sector alone contributes to 22% of carbon emissions, of which 80% are contributed by road transportation. In this paper we investigate the potential private car greenhouse gas (GHG) emissions reduction and social welfare gains resulting from upgrading the bus service in the Greater Beirut Area. To this end, a stated preference (SP) survey on mode switching from private car to bus was conducted in this area and analyzed by means of a mixed logit model. We then used the model outputs to simulate aggregate switching behavior in the study area and the attendant welfare and environmental gains and private car GHG emissions reductions under various alternative scenarios of bus service upgrade. We recommend a bundle of realistic bus service improvements in the short term that will result in a reasonable shift to buses and measurable reduction in private car emissions. We argue that such improvements will need to be comprehensive in scope and include both improvements in bus level of service attributes (access/egress time, headway, in-vehicle travel time, and number of transfers) and the provision of amenities, including air-conditioning and Wi-Fi. Moreover, such a service needs to be cheaply priced to achieve reasonably high levels of switching behavior. With a comprehensively overhauled bus service, one would expect that bus ridership would increase for commuting purposes at first, and once the habit for it is formed, for travel purposes other than commuting, hence dramatically broadening the scope of private car GHG emissions reduction. This said, this study demonstrates the limits of focused sectorial policies in targeting and reducing private car GHG emissions, and highlights the need for combining behavioral interventions with other measures, most notably technological innovations, in order for the contribution of this sector to GHG emissions mitigation to be sizable.  相似文献   

12.
In order to reduce energy use and cut emissions that contribute to climate change, countries need to radically reinvent their fossil-fuel intensive transportation systems. As a major consumer of energy and contributor to greenhouse gas (GHG) emissions, the U.S. transportation sector faces extraordinary challenges in the twenty-first century. Transportation in the U.S. depends heavily on fossil-fuel dependent cars and planes to the near exclusion of more energy-efficient electric trains. In order to address this concern, some policy makers refer to “technological optimism” which seeks no systemic change but instead focuses on employing technology to reduce the energy demand and environmental impact of the status quo. On the other hand, some researchers suggest a systematic paradigm shift away from cars and planes to intermodal systems that improve the sustainability of the system as a whole. High-speed rail (HSR) is arguably such an investment that can further this shift and help to achieve a more diversified and balanced transportation system. In this respect, by largely examining the role of the U.S. cars and planes “culture” in the economy, this paper elaborates on how building a HSR system may help U.S. advance towards environmental sustainability in transportation, make a break from the status quo, and create a more balanced, multimodal transportation system that will improve the quality and efficiency of travel.  相似文献   

13.
This study analyzes the problem of conflicting travel time and emissions minimization in context of daily travel decisions. The conflict occurs because the least travel time option does not always lead to least emissions for the trip. Experiments are designed and conducted to collect data on daily trips. Random parameter (mixed) logit models accounting for correlations among repeated observations are estimated to find the trade-off between emissions and travel time. Our results show that the trade-off values vary with contexts such as route and departure time choice scenarios. Further, we find that the trade-off values are different for population groups representing male, female, individuals from high income households, and individuals who prefer bike for daily commute. Based on the findings, several policies are proposed that can help to lower greenhouse gas (GHG) emissions from transportation networks. This is one of the first exploratory studies that analyzes travel decisions and the corresponding trade-off when emissions related information are provided to the road users.  相似文献   

14.
In this paper we consider travel across Virginia and identify sustainability “sweet spots” where commute lengths and vehicle emissions per mile combine to maximize green travel in terms of total CO2 emissions associated with commuting. The analysis is conducted across local voter precincts (N = 2373 in the state) because they are a useful proxy for neighborhoods and well-sized for implementing policy designed to encourage sustainable travel behavior. Virginia is especially appropriate for an examination of variability in sustainable travel behavior and technologies because the state’s transportation, demographic, and political patterns are particularly diverse and have been changing rapidly. We identify four Virginia precinct-based sustainability clusters: Sweet Spots, Emerging Sweet Spots, Neutral and Non-sustaining. A model of demographic differences among the clusters shows that sustainability outcomes, understood in terms of both local commute behavior and vehicle emissions, are significantly associated with the diverse demography and politics of the state. We also look at changes in transportation sustainability and socio-demographic trends within the clusters over the past half-decade, showing that differences in sustainability and demographic metrics are actually accelerating within the state over time. We conclude with a discussion of the implications of the differences among the clusters for developing and implementing effective transportation sustainability policies across the state.  相似文献   

15.
ABSTRACT

This paper investigates strategies that could achieve an 80% reduction in transportation emissions from current levels by 2050 in the City of Philadelphia. The baseline daily lifecycle emissions generated by road transportation in the Greater Philadelphia Region in 2012 were quantified using trip information from the 2012 Household Travel Survey (HTS). Emissions were projected to the year 2050 accounting for population growth and trends in vehicle technology for both the Greater Philadelphia Region and the City of Philadelphia. The impacts of vehicle technology and shifts in travel modes on greenhouse gas (GHG) emissions in 2050 were quantified using a scenario approach. The analysis of 12 different scenarios suggests that 80% reduction in emissions is technically feasible through a combination of active transportation, cleaner fuels for public transit vehicles, and a significant market penetration of battery-electric vehicles. The additional electricity demand associated with greater use of electric vehicles could amount to 10.8 TWh/year. The use of plug-in hybrid electric vehicles (PHEV) shows promising results due to high reductions in GHG emissions at a potentially manageable cost.  相似文献   

16.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment.  相似文献   

17.
Ito  Douglas T.  Niemeier  Debbie  Garry  Gordon 《Transportation》2001,28(4):409-425
Transportation conformity is a US regulatory process that requires that transportation modeling be integrated with air quality modeling. Consequently, every change to either modeling process is undertaken with great scrutiny by the regional governments, who have to use the models for demonstrating conformity. This paper explores the "trip versus link debate," which stems from the fact that the standard travel demand models used by most metropolitan planning organizations are primarily link oriented, while the air quality models have been primarily trip oriented. Using the Sacramento region we examine the effects on mobile source emissions inventories when speed-VMT distributions are constructed using the trip and link-based philosophies. The results of our study indicate that trip-based VMT-speed distributions produce consistently lower emissions estimates than the link-based distributions. We use the results to assert that deciding between a trip-based or link-based conformity modeling process involves more than the technical difficulty of changesto the models or the potential political ramifications, it involves assessing which method will provide the most accurate estimates of regional motor vehicle emissions. We also examine ways to think about constructing mobile source emission inventories.  相似文献   

18.
Appropriate microeconomic foundations of mobility are decisive for successful policy design in transportation and, in particular, for the challenge of climate change mitigation. Recent research suggests that behavior in transportation cannot be adequately represented by the standard approach of revealed preferences. Moreover, mobility choices are influenced by factors widely regarded as normatively irrelevant. Here we draw on insights from behavioral economics, psychology and welfare theory to examine how transport users make mobility decisions and when it is desirable to modify them through policy interventions. First, we explore systematically which preferences, heuristics and decision processes are relevant for mobility-specific behavior, such as mode choice. We highlight the influence of infrastructure on the formation of travel preferences. Second, we argue that the behavioral account of decision-making requires policy-makers to take a position on whether transport policies should be justified by appealing to preference satisfaction or to raising subjective well-being. This distinction matters because of the (i) influence of infrastructure on preference formation, (ii) health benefits from non-motorized mobility, (iii) negative impact of commuting on happiness and (iv) status-seeking behavior of individuals. The orthodox approach of only internalizing externalities is insufficient because it does not allow for the evaluation of these effects. Instead, our analysis suggests that transport demand modeling should consider behavioral effects explicitly.  相似文献   

19.
The city of Montreal has taken recent initiatives to significantly reduce overall greenhouse (GHG) emissions from the transport sector and has made large investments in alternative transportation. In particular, the city has called upon the participation of all businesses and institutions to further these goals. In light of these recent plans, this study identifies with two objectives: first, to develop a methodology for estimating GHG emissions generated by commuters to McGill University’s downtown campus; and secondly, to better understand who, how, and when each commuter to McGill generates travel-related GHG. Mode split, travel distance, age, gender and job category were uncovered by a 2011 travel survey that we conducted across the University, from which daily individual GHG emissions are estimated. Details about these trips not only reveal who the largest polluters are and where they are coming from, but also the seasonality of their emissions. These associations are then used to narrate scenarios which present alternatives to the structure of individuals’ commutes by examining the outcomes of selected shifts in travel behavior on total GHG emissions.  相似文献   

20.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号